Making a monthly mean
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Jonas Damsbo
am 27 Okt. 2018
Kommentiert: Jonas Damsbo
am 27 Okt. 2018
Hi
I have data for the geopotential for every 6 hours over a whole month. I want to get a mean over the data for the month. For example for January, I have 124 timesteps, each with their data, but I only want data for the whole month (1 dataset). I have tried, but I'm not sure if I've done it right? Pleas can anyone help me?
lon = ncread(filename,'longitude') ; nx = length(lon) ;
lat = ncread(filename,'latitude') ; ny = length(lat) ;
time = ncread(filename,'time') ; nt = length(time);
zmean = zeros([nx ny]);
for n = 1:nt
z = ncread(filename,'z',[1 1 nt],[nx ny 1]);
zx(:,1:ny) = z(:,ny:-1:1);
zmean = zmean + zx;
end
zmean = zmean/nt;
Here is (lon = 360x1), (lat = 181x1), (time = 124x1 int32), (z = 360x181)
0 Kommentare
Akzeptierte Antwort
jonas
am 27 Okt. 2018
Bearbeitet: jonas
am 27 Okt. 2018
6 Kommentare
jonas
am 27 Okt. 2018
Bearbeitet: jonas
am 27 Okt. 2018
After looking at your data I think perhaps a timetable is in fact not the way to go, as I suspect that you want to retain the gridded nature of your data. If the problem is to average the monthly data, then I think there is a very simple solution. Simply,
z = ncread(filename,'z');
z_monthly(:,:,1) = mean(z,3);
This takes the average over the third dimension (time). Then you can simply put february's data in z_monthly(:,:,2) etc... and you will end up with a lat x lon x n matrix where n is the number of months.
If the data is uniformly spaced, then I see no point in using retime. If some data is missing, however, then you'd probably want to interpolate before taking the average.
I would also suggest you take your time-vector and convert it to datetime, to make life easier for you.
t = datetime(1900,1,1,0,0,0)+hours(time);
t =
124×1 datetime array
01-Dec-1979 00:00:00
01-Dec-1979 06:00:00
01-Dec-1979 12:00:00
Did I understand the issue?
Weitere Antworten (1)
Jonas Damsbo
am 27 Okt. 2018
2 Kommentare
jonas
am 27 Okt. 2018
If you load the data one month at a time, then you can just average all the data along the time dimension. If you load more than one month, then you need to split the data in n segments when taking the mean (where n is the number of months).
Siehe auch
Kategorien
Mehr zu Dates and Time finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!