MATLAB Answers

How to recall values from for loop into a column matrix?

2 views (last 30 days)
Robert  Flores
Robert Flores on 14 Oct 2018
Commented: madhan ravi on 14 Oct 2018
Hello everyone,
I am trying to get four values from the for loop statement I made, Q_bar1, Q_bar2, and so forth. But, I don't know how to assign those values into a column matrix. Below is a copy of my code, if anyone is able to help, it will be most appreciated.
CODE:
E1 = 27.1; % measured in Msi
E2 = 1.3; % measured in Msi
E3 = E2;
v12 = 0.33;
v21 = E2*(v12/E1);
v13 = v12;
v31 = E3*(v13/E1);
G12 = 0.80; % measured in Msi
G13 = G12;
v23 = 0.5;
v32 = E3*(v23/E2);
delta = (1-(v12*v21)-(v23*v32)-(v13*v31)-2*(v21*v32*v13))/(E1*E2*E3);
C11 = (1-(v23*v32))/(E2*E3*delta);
C22 = (1-(v13*v31))/(E1*E3*delta);
C33 = (1-(v12*v21))/(E1*E2*delta);
C12 = (v12+(v13*v32))/(E1*E3*delta);
C23 = (v23+(v21*v13))/(E1*E2*delta);
C13 = (v31+(v21*v32))/(E2*E3*delta);
C55 = G13;
C66 = G12;
% Stiffness Matrix
C = [C11 C12 C12 0 0 0;
C12 C22 C23 0 0 0;
C12 C23 C22 0 0 0;
0 0 0 (C22-C23)/2 0 0;
0 0 0 0 C55 0;
0 0 0 0 0 C55]
% Reduced Stiffness Matrix
Q11 = C11-(C12^2/C22);
Q12 = C12-(C23/C22);
Q21 = Q12;
Q22 = C22-(C23^2/C22);
Q55 = C55;
Q66 = C66;
Q = [Q11 Q12 0;
Q21 Q22 0;
0 0 Q55]
% Transformed Reduced Stiffness Matrix
% theta = input('insert desired angle= ')
for theta = [0 17 -63 90]
m = cosd(theta);
n = sind(theta);
Qxx = m^4*Q11 + n^4*Q22 + 2*m^2*n^2*Q12 + 4*m^2*n^2*Q66;
Qxy = m^2*n^2*Q11 + m^2*n^2*Q22 + (m^4+n^4)*Q12 - 4*m^2*n^2*Q66;
Qxs = m^3*n*Q11 - m*n^3*Q22 - m*n*(m^2-n^2)*Q12 - 2*m*n*(m^2-n^2)*Q66;
Qyx = Qxy;
Qyy = n^4*Q11 + m^4*Q22 + 2*m^2*n^2*Q12 + 4*m^2*n^2*Q66;
Qys = m*n^3*Q11 - m^3*n*Q22 + m*n*(m^2-n^2)*Q12 + 2*m*n*(m^2-n^2)*Q66;
Qss = m^2*n^2*Q11 + m^2*n^2*Q22 - 2*m^2*n^2*Q12 + (m^2-n^2)^2*Q66;
Qsx = Qxs;
Qsy = Qys;
Q_bar = [Qxx Qxy Qxs;
Qyx Qyy Qys;
Qsx Qsy Qss]
end

Accepted Answer

madhan ravi
madhan ravi on 14 Oct 2018
E1 = 27.1; % measured in Msi
E2 = 1.3; % measured in Msi
E3 = E2;
v12 = 0.33;
v21 = E2*(v12/E1);
v13 = v12;
v31 = E3*(v13/E1);
G12 = 0.80; % measured in Msi
G13 = G12;
v23 = 0.5;
v32 = E3*(v23/E2);
delta = (1-(v12*v21)-(v23*v32)-(v13*v31)-2*(v21*v32*v13))/(E1*E2*E3);
C11 = (1-(v23*v32))/(E2*E3*delta);
C22 = (1-(v13*v31))/(E1*E3*delta);
C33 = (1-(v12*v21))/(E1*E2*delta);
C12 = (v12+(v13*v32))/(E1*E3*delta);
C23 = (v23+(v21*v13))/(E1*E2*delta);
C13 = (v31+(v21*v32))/(E2*E3*delta);
C55 = G13;
C66 = G12;
% Stiffness Matrix
C = [C11 C12 C12 0 0 0;
C12 C22 C23 0 0 0;
C12 C23 C22 0 0 0;
0 0 0 (C22-C23)/2 0 0;
0 0 0 0 C55 0;
0 0 0 0 0 C55]
% Reduced Stiffness Matrix
Q11 = C11-(C12^2/C22);
Q12 = C12-(C23/C22);
Q21 = Q12;
Q22 = C22-(C23^2/C22);
Q55 = C55;
Q66 = C66;
Q = [Q11 Q12 0;
Q21 Q22 0;
0 0 Q55]
% Transformed Reduced Stiffness Matrix
% theta = input('insert desired angle= ')
ctr=1
for theta = [0 17 -63 90]
m = cosd(theta);
n = sind(theta);
Qxx = m^4*Q11 + n^4*Q22 + 2*m^2*n^2*Q12 + 4*m^2*n^2*Q66;
Qxy = m^2*n^2*Q11 + m^2*n^2*Q22 + (m^4+n^4)*Q12 - 4*m^2*n^2*Q66;
Qxs = m^3*n*Q11 - m*n^3*Q22 - m*n*(m^2-n^2)*Q12 - 2*m*n*(m^2-n^2)*Q66;
Qyx = Qxy;
Qyy = n^4*Q11 + m^4*Q22 + 2*m^2*n^2*Q12 + 4*m^2*n^2*Q66;
Qys = m*n^3*Q11 - m^3*n*Q22 + m*n*(m^2-n^2)*Q12 + 2*m*n*(m^2-n^2)*Q66;
Qss = m^2*n^2*Q11 + m^2*n^2*Q22 - 2*m^2*n^2*Q12 + (m^2-n^2)^2*Q66;
Qsx = Qxs;
Qsy = Qys;
Q_bar(:,:,ctr) = [Qxx Qxy Qxs;
Qyx Qyy Qys;
Qsx Qsy Qss]
ctr=ctr+1;
end

  1 Comment

madhan ravi
madhan ravi on 14 Oct 2018
Make sure to accept the answer and give a vote if it works

Sign in to comment.

More Answers (0)

Tags


Translated by