how to search an ordered array/ find bracket
15 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Alessandro D
am 18 Sep. 2018
Kommentiert: Alessandro D
am 1 Mai 2019
I am trying to write a fast procedure to locate the position of an element in a sorted array. Specifically the function should take as inputs: n*1 vector x monotonically increasing and a scalar xi, and return as output an integer j such that x(j)<= xi <x(j+1). I came up with the following:
(EX 1)
function j = mylocate1(x,xi)
n = size(x,1);
% Find x(j)<= xi <x(j+1), for j=1,..,n-1
if xi<x(1)
j = 0;
else
j = find(x<=xi, 1, 'last' );
end
j = max(j,1);
j = min(j,n-1);
end %close function1
or
(EX 2)
function j = mylocate2(x,xi)
n = size(x,1);
% Find x(j)<= xi <x(j+1), for j=1,..,n-1
j = sum(x<=xi);
j = max(j,1);
j = min(j,n-1);
end %close function2
I tested the above functions and they take approximately the same time but they are slow when working with large arrays. Is there anything faster? I was looking for something like the locate/hunt Fortran subroutines in the Numerical Recipes book (find location in ordered table by bisection). Is there a MEX implementation somewhere?
0 Kommentare
Akzeptierte Antwort
Prem Kumar Tiwari
am 26 Sep. 2018
Hello Alessandro,
Since the array is sorted already, a good way to solve similar set of problems is popularly known as Binary Search. Binary Search is fastest known technique for similar problems. This runs in a time complexity of O(log(n)) and this also happens to be the fastest known technique.
You can read and learn more about it on Wiki.
As far as implementation is concerned, your implementation involves a recursion which imposes an overhead on the execution time, as well as on the memory requirements. This could be one of the reason for slow execution on large input array.
As a rule of thumb, it is considered a good practice to program in iterative fashion, this helps reduce overhead incurred due to recursive calls.
Following is an implementation of the Binary Search for use case along the lines of yours. This finds out the largest index idx, which satisfies A(idx) <= num. Since it finds out the rightmost idx the case when input array has duplicate elements is taken care of automatically. Also, if it happens that idx == length(A) then it indicates absence of A(idx+1) which is greater than num.
Feel free to customize the following implemenation as per your needs.
function idx = binarySearch(A, num)
l = 1;
r = length(A);
idx = 1;
while l < r
idx = 1 + floor((l + r - 1) / 2);
if A(idx) > num
r = idx - 1;
elseif A(idx) <= num
l = idx;
end
end
if l == r
idx = r;
end
if A(idx) > num
idx = -1;
end
end
3 Kommentare
Jonah Pearl
am 1 Mai 2019
Thank you, this helped me as well. I also modified the code to find the smallest idx such that A(idx) >= num. Though I tested for a while, I'm not 100% confident that this is correct, so if someone thinks I missed a +1 somewhere or something, a heads-up would be appreciated. Hope this helps someone else out:
% find smallest idx such that A(idx) >= num1
left = 1;
right = length(A);
idx = length(A);
while left < right
idx = floor((left + right - 1) / 2);
if A(idx) < num1
left = idx + 1;
elseif A(idx) >= num1
right = idx;
end
end
if left == right
idx = right;
end
if A(idx) < num1
idx = -1;
end
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Matrices and Arrays finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!