Filter löschen
Filter löschen

How linear system of equations can be solved in matlab

1 Ansicht (letzte 30 Tage)
Wajahat
Wajahat am 8 Sep. 2018
Bearbeitet: madhan ravi am 10 Sep. 2018
How we can solve following linear system of equations in matlab?
A1_{x}=1i*a*(A1+A2);
A2_{x}=1i*a*(A1-A2);
A1_{t}=(-1i*a./2)*A1-A2;
A2_{t}=A1+(1i*a./2)*A2;
where A1=A1(x,t) and A2=A2(x,t) and "a" is an arbitrary constant. How can these equations can be solved in matlab?
And A1_{x} means partial derivative of A1 w.r.t "x".
  8 Kommentare
Wajahat
Wajahat am 10 Sep. 2018
@Ravi, I have try to solve it symbolically, but matlab shows an error.
syms l p q
syms f1(x) f2(x)
S = dsolve(diff(f1) == l.^{-1}.*1i.*p.*f1 + l.^{-1}.*1i.*q.*f2, diff(f2) == l.^{-1}.*1i.*q.*f1 - l.^{-1}.*1i.*p.*f2);
S.f1
S.f2
Can you remove an error
Walter Roberson
Walter Roberson am 10 Sep. 2018
What is the I.^{-1} intended to mean?
It is not possible to raise anything to a cell array, not unless you define your own object class and override the power() operator.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

madhan ravi
madhan ravi am 10 Sep. 2018
Bearbeitet: madhan ravi am 10 Sep. 2018
Try this @Wajahat:
syms l p q
syms f1(x) f2(x)
%edited after sir Walters comment
S1 = diff(f1) == l.^(-1).*1i.*p.*f1 + l.^(-1).*1i.*q.*f2;
S2 = diff(f2) == l.^{-1}.*1i.*q.*f1 - l.^{-1}.*1i.*p.*f2;
S = dsolve(S1,S2)
S.f2
S.f1

Weitere Antworten (0)

Kategorien

Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by