Lgraph Error, i try to create a new segnet (not pre trained ). But this is not the same because first encoder and the others do not encompass the mpool/size and mpool/indices. Please help me!

2 Ansichten (letzte 30 Tage)
filterSize = 3; numFilters = 32;
layers = [ imageInputLayer([512 512 1],'Name','input')
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','encoder1_conv1')
batchNormalizationLayer('Name','encoder1_BN_1')
reluLayer('Name','encoder1_relu_1')
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','encoder1_conv2')
batchNormalizationLayer('Name','encoder1_BN_2')
reluLayer('Name','encoder1_relu_2')
maxPooling2dLayer(2,'Stride',2,'Name','mpool1','HasUnpoolingOutputs',true)
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','encoder2_conv1')
batchNormalizationLayer('Name','encoder2_BN_3')
reluLayer('Name','encoder2_relu_3')
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','encoder2_conv2')
batchNormalizationLayer('Name','encoder2_BN_4')
reluLayer('Name','encoder2_relu_4')
maxPooling2dLayer(2,'Stride',2,'Name','mpool2','HasUnpoolingOutputs',true)
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','encoder3_conv1')
batchNormalizationLayer('Name','encoder3_BN_5')
reluLayer('Name','encoder3_relu_5')
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','encoder3_conv2')
batchNormalizationLayer('Name','encoder3_BN_6')
reluLayer('Name','encoder3_relu_6')
maxPooling2dLayer(2,'Stride',2,'Name','mpool3','HasUnpoolingOutputs',true)
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','encoder4_conv1')
batchNormalizationLayer('Name','encoder4_BN_7')
reluLayer('Name','encoder4_relu_7')
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','encoder4_conv2')
batchNormalizationLayer('Name','encoder4_BN_8')
reluLayer('Name','encoder4_relu_8')
maxPooling2dLayer(2,'Stride',2,'Name','mpool4','HasUnpoolingOutputs',true)
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','encoder5_conv1')
batchNormalizationLayer('Name','encoder5_BN_9')
reluLayer('Name','encoder5_relu_9')
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','encoder5_conv2')
batchNormalizationLayer('Name','encoder5_BN_10')
reluLayer('Name','encoder5_relu_10')
maxPooling2dLayer(2,'Stride',2,'Name','mpool5','HasUnpoolingOutputs',true)
maxUnpooling2dLayer('Name','unpool5')
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','decoder5_conv1')
batchNormalizationLayer('Name','decoder5_BN_19')
reluLayer('Name','decoder5_relu_19')
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','decoder5_conv2')
batchNormalizationLayer('Name','decoder5_BN_20')
reluLayer('Name','decoder5_relu_20')
maxUnpooling2dLayer('Name','unpool4')
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','decoder4_conv1')
batchNormalizationLayer('Name','decoder4_BN_17')
reluLayer('Name','decoder4_relu_17')
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','decoder4_conv2')
batchNormalizationLayer('Name','decoder4_BN_18')
reluLayer('Name','decoder4_relu_18')
maxUnpooling2dLayer('Name','unpool3')
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','decoder3_conv1')
batchNormalizationLayer('Name','decoder3_BN_15')
reluLayer('Name','decoder3_relu_15')
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','decoder3_conv2')
batchNormalizationLayer('Name','decoder3_BN_16')
reluLayer('Name','decoder3_relu_16')
maxUnpooling2dLayer('Name','unpool2')
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','decoder2_conv1')
batchNormalizationLayer('Name','decoder2_BN_13')
reluLayer('Name','decoder2_relu_13')
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','decoder2_conv2')
batchNormalizationLayer('Name','decoder2_BN_14')
reluLayer('Name','decoder2_relu_14')
maxUnpooling2dLayer('Name','unpool1')
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','decoder1_conv1')
batchNormalizationLayer('Name','decoder1_BN_11')
reluLayer('Name','decoder1_relu_11')
convolution2dLayer(filterSize,numFilters,'Padding',1,'Stride',1,'Name','decoder1_conv2')
batchNormalizationLayer('Name','decoder1_BN_12')
reluLayer('Name','decoder1_relu_12')
softmaxLayer('Name','softmax')
pixelClassificationLayer('Name','classOutput')]
lgraph1 = layerGraph(layers) %
lgraph_1 = connectLayers(lgraph1,'mpool1/indices','unpool1/indices'); lgraph_1 = connectLayers(lgraph1,'mpool1/size','unpool1/size'); %
lgraph_1 = connectLayers(lgraph1,'mpool2/indices','unpool2/indices'); lgraph_1 = connectLayers(lgraph1,'mpool2/size','unpool2/size');
lgraph_1 = connectLayers(lgraph1,'mpool3/indices','unpool3/indices'); lgraph_1 = connectLayers(lgraph1,'mpool3/size','unpool3/size');
lgraph_1 = connectLayers(lgraph1,'mpool4/indices','unpool4/indices'); lgraph_1 = connectLayers(lgraph1,'mpool4/size','unpool4/size');
lgraph_1 = connectLayers(lgraph1,'mpool5/indices','unpool5/indices'); lgraph_1 = connectLayers(lgraph1,'mpool5/size','unpool5/size');
% lgraph=connectLayers(layers,lgraph1);

Antworten (0)

Kategorien

Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by