Is my code for bvp4c for a set of odes is correctly written
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
I have the following set of equations:
f"=g(g^2+gamma^2)/(g^2+lambda*gamma^2) ------ (1)
g'= (1/3)*f'^2-(2/3)*(f*f")+ Mn*f' ------------------------(2)
t"+Rd*t"+ 2*Pr*f*t'/3+ Nb*t'*p'+Nt*(t')^2= 0------(3)
p"+(2*Lew*f*p')/3+ Nt*t"/Nb= 0 ------------------------(4)
'f', 'g', 't', 'p' are the dependent variables and η is the independent variable
And the boundary conditions are as follows:
f=0, f'= delta, t=1, p=1 at y=0
f'-->0, t-->0, p-->0 as y----> infinity
So solving these equations numerically I have used 'bvp4c' solver
So converting these higher order equations to first order equations, I have let
f = y1, df/dη = y2, g = y3, t = y4, dt/dη = y5, p = y6, dp/dη = y7
So the first order equations are
y1' = y2,
y2' = {y3*(y3^2+ gamma^2)}/(y3^2+ lambda*gamma^2) ,
y3' = y2^2/3 − (2/3)*y1*{y3*(y3^2+ gamma^2)/(y3^2+ lambda*gamma^2)} + Mny2,
y4' = y5,
y5' = −(1/(1+Rd))*{(2*Pr*y1*y5)/3 + Nb*y5*y7 + Nt*y5^2} ,
y6' = y7,
y7' = −(2*Le*y1*y7)/3 + {Nt/Nb*(1+Rd)}{(2*Pr*y1*y5)/3 + Nb*y5*y7 + Nt*y5^2}
I would like to know if my written code is correct and if I have got the correct plots
function sol= proj
clc;clf;clear;
global lambda gama Pr Rd Lew Nb Nt Mn m
gama=1;
Lew=1;
Nt=1;
Rd=1;
Pr=5;
Mn=1;
pp=[0.5 1 1.5];
qq=[0.2 0.5 0.9];
%figure(1)
%plot(2,1);hold on
options=bvpset('stats','on','RelTol',1e-9);
m=linspace(0,10);
solinit= bvpinit(m,[1,0,0,0,0,0,0]);
for i=1:numel(pp)
lambda=pp(i);
for i=1:numel(qq);
Nb=qq(i)
sol= bvp4c(@projfun,@projbc,solinit,options);
y1=deval(sol,0)
solinit= sol;
plot(sol.x,sol.y(6,:));hold on
end
end
end
function f= projfun(x,y)
global lambda gama Pr Rd Lew Nb Nt Mn
f= [y(2)
y(3)*(y(3)^2+gama^2)/(y(3)^2+lambda*gama^2)
y(2)^2/3-(2*y(1)*y(3)*(y(3)^2+gama^2))/(3*(y(3)^2+lambda*gama^2))+Mn*y(2)
y(5)
-(2*Pr*y(1)*y(5))/(3*(1+Rd)) - (Nb*y(5)*y(7))/(1+Rd) - (Nt*y(5)^2)/(1+Rd)
y(7)
-(2*Lew*y(1)*y(7))/3+ Nt*((2*Pr*y(1)*y(5))/(3*(1+Rd)) + (Nb*y(5)*y(7))/(1+Rd) + (Nt*y(5)^2)/(1+Rd))/Nb];
end
function res= projbc(ya,yb)
res= [ya(1); ya(2)-1; ya(4)-1.0; ya(6)-1.0; yb(2); yb(4); yb(6)];
end
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/171892/image.jpeg)
2 Kommentare
Walter Roberson
am 9 Apr. 2018
If you have the Symbolic Toolbox, then I recommend that you look at odeFunction and go through the series of steps shown in the documentation to convert an ode right through to a function handle that can be used with the ode* routines.
Mayokun Ojediran
am 3 Jul. 2019
Hello, I am trying to adapt your code to solve the following equations:
(2n+1/2(n+1))f*theta' = (1/Bo^(2/n+1))*theta''
1/2*f'^2 +(2n+1/2(n+1))*f*f'' = -(f''^(n-1)*f'' + f''^(n-1)*f''') + theta
'f' and 'theta' are the dependent variables and η is the independent variable and Bo is a constant
f= f' = 0 , theta=1 at y=0
f'-->0, theta-->0 as y----> infinity
And the boundary conditions are as follows:
Converting to First order equations,
theta = y1, dtheta/dη = y2, f = y3, df/dη = y4, d^2f/d\η^2 = y5
The first order equations are
y(2);
Bo^(2/(n+1))*((2*n+1)/2*(n+1))*((2*n+1)/2*(n+1))*y(3)*y(2);
y(4);
y(5);
(-y(4)^2*n+2*y(3)*y(5)*n+2*y(1)*n-y(4)^2+y(3)*y(5)+2*y(1))/(2*y(5)^(n-1)*n*(n+1));
I have tried adapting your code but not completely sure how to implement the boundary conditions, please help.
function sol= proj
clc;clf;clear;
global n Bo
n = 0.4;
Bo = 0.0003548133892;
pp=[0.5 1 1.5];
qq=[0.2 0.5 0.9];
%figure(1)
%plot(2,1);hold on
options=bvpset('stats','on','RelTol',1e-9);
m=linspace(0,10);
solinit= bvpinit(m,[1,0,0,0,0,0,0]);
for i=1:numel(pp)
lambda=pp(i);
for i=1:numel(qq);
Nb=qq(i)
sol= bvp4c(@projfun,@projbc,solinit,options);
y1=deval(sol,0)
solinit= sol;
plot(sol.x,sol.y(4,:));hold on
end
end
end
function f= projfun(x,y)
global lambda gama Pr Rd Lew Nb Nt Mn
f= [y(2)
Bo^(2/(n+1))*((2*n+1)/2*(n+1))*((2*n+1)/2*(n+1))*y(3)*y(2);
y(4)
y(5)
(-y(4)^2*n+2*y(3)*y(5)*n+2*y(1)*n-y(4)^2+y(3)*y(5)+2*y(1))/(2*y(5)^(n-1)*n*(n+1))];
end
function res= projbc(ya,yb)
res= [ya(1); ya(2)-1; ya(4)-1.0; ya(6)-1.0; yb(2); yb(4); yb(6)];
end
Antworten (0)
Siehe auch
Kategorien
Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!