Problem with definite integration using integral(). Infinite or Not-a-Number value encountered.
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Harsha K
am 15 Aug. 2017
Beantwortet: Harsha K
am 13 Sep. 2017
Hello,
This is my function definition.
function E_j = E_fld_integ(facet_flag, pd, lower_limit, upper_limit)
F = @(x)(exp(1i*pd).*exp(1i*k*x*sin_theta));
G = @(x)(exp(1i.*(pd + (pd_def_min-sqrt(pd_def_min^2-x.^2)) ) )...
.* exp(1i*k*x.*sin_theta) );
% case 1: E_j = integral(F, lower_limit, upper_limit, 'ArrayValued', true);
% case 2: E_j = integral(G, lower_limit, upper_limit, 'ArrayValued', true);
end
Where F and G are functions of variable 'x'. All other names(k, pd_def_min, pd) are constants. Although 'sin_theta' is a vector with 1000 values.
Let us consider values of constants:
lower_limit = 30000; upper_limit = 50000; pd = 0; pd_def_min = 95;
Goal: I would like the result of the definite integral to be an array of 1000 double-valued complex numbers in both cases above for F and G functions respectively.
Current scenario and problem:
1. F evaluates conveniently with the provided limits.
2. Whereas evaluation of G translates to the following error:
- Warning: Infinite or Not-a-Number value encountered.
- > In integralCalc/iterateArrayValued (line 267)
- In integralCalc/vadapt (line 130)
- In integralCalc (line 75)
- In integral (line 88)
- In [mainfunctioncall]>E_fld_integ (line 206)
Could someone help me understand as to what is happening and is there a more elegant (and fast execution-wise) solution for the above goal?
Do I have to use Taylor's expansion or Bessels integrals to solve for "G" ?
4 Kommentare
Akzeptierte Antwort
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!