How can i evaluate my network performance as i have trained my model?
7 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Machine Learning Enthusiast
am 18 Feb. 2017
Bearbeitet: Machine Learning Enthusiast
am 20 Feb. 2017
I have trained my model with 100% accuracy,but i want to evaluate my trained work from test data set or unseen data.what should i add in my code for testing purpose? i-e to test validation data and test data
p = u; %inputs
t = f; %targets
[pn,ps] = mapminmax(p);
[tn,ts] = mapminmax(t);
%net = newff(p,t,10,10{},'trainlm');
net=newff(minmax(pn),[30,25,16],{'tansig','tansig','purelin'},'trainscg');
%net = init(net);
% net.IW{1,1}=wts0;
% net.b{1}=bias0;
net.trainParam.show =2;
net.trainParam.epochs =5000;
net.trainParam.goal =1e-7;
%net.trainParam.mc=0.95;
net.trainParam.lr=0.2;
[net,tr] = train(net,pn,tn);
ANN = sim(net,pn);
output1= mapminmax('reverse',ANN,ts);
wts1=net.IW{1,1};
bias1=net.b{1};
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 18 Feb. 2017
7 Kommentare
Walter Roberson
am 18 Feb. 2017
The code for that example does not create a network named "net". Are you trying to apply that to deepnet just before
% Train the deep network on the wine data.
?
Machine Learning Enthusiast
am 20 Feb. 2017
Bearbeitet: Machine Learning Enthusiast
am 20 Feb. 2017
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Deep Learning Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!