Reduce data dimension using PCA

3 Ansichten (letzte 30 Tage)
Hg
Hg am 7 Nov. 2016
pca() outputs the coefficient of the variables and principal components of a data. Is there any way to reduce the dimension of the data (340 observations), let say from 1200 dimension to 30 dimension using pca()?
  2 Kommentare
Adam
Adam am 7 Nov. 2016
You should just be able to keep the 30 largest components from running pca.
Hg
Hg am 8 Nov. 2016
I use
[residuals,reconstructed] = pcares(X,ndim)

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Vassilis Papanastasiou
Vassilis Papanastasiou am 17 Dez. 2021
Hi Hg,
What you can do is to use pca directly. Say that X is of size 340x1200 (340 measurements and 1200 variables/dimensions). You want to get an output with reduced dimensionaty of 30. The code below will do that for you:
p = 30;
[~, pca_scores, ~, ~, var_explained] = pca(X, 'NumComponents', p);
  • pca_scores is your reduced dimension data.
  • var_explained contains the respective variances of each component.
I hope that helps.

Kategorien

Mehr zu Dimensionality Reduction and Feature Extraction finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by