sqp method - slow
20 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hi,
I run the sqp, active-set and interior-point methods on the same set of data and their options are the same. I am confused why it takes 20 minutes for sqp to find the solution while for the other two methods it takes less than 5 seconds.
My goal function is:
Err = sum((F_observed - F_raw) .^2);
Here is the 'iter' output:
Norm of First-order
Iter F-count f(x) Feasibility Steplength step optimality
0 16 2.027691e+05 0.000e+00 2.611e+06
1 55 2.015284e+05 0.000e+00 2.737e-04 8.211e-03 7.520e+06
2 88 1.915127e+05 0.000e+00 2.326e-03 6.598e-02 2.434e+06
3 122 1.892994e+05 0.000e+00 1.628e-03 4.342e-02 1.879e+06
4 160 1.876097e+05 0.000e+00 3.910e-04 1.067e-02 4.279e+06
5 189 1.785387e+05 0.000e+00 9.689e-03 2.448e-01 5.118e+06
6 218 1.612519e+05 0.000e+00 9.689e-03 2.418e-01 3.995e+06
7 244 1.543721e+05 0.000e+00 2.825e-02 6.225e-01 3.297e+06
8 271 1.370354e+05 0.000e+00 1.977e-02 4.613e-01 3.018e+06
9 295 1.306121e+05 1.000e+00 5.765e-02 1.114e+00 4.053e+06
10 324 1.243357e+05 1.000e+00 9.689e-03 2.222e-01 2.623e+06
11 348 1.210242e+05 1.000e+00 5.765e-02 1.063e+00 4.090e+06
12 372 1.083141e+05 0.000e+00 5.765e-02 1.042e+00 2.634e+06
13 393 1.041635e+05 0.000e+00 1.681e-01 1.947e+00 3.196e+06
14 417 8.626112e+04 1.000e+00 5.765e-02 8.158e-01 1.418e+06
15 438 8.510665e+04 0.000e+00 1.681e-01 1.190e+00 2.006e+06
16 455 7.392513e+04 0.000e+00 7.000e-01 3.826e+00 1.067e+06
17 471 6.790133e+04 0.000e+00 1.000e+00 1.544e+00 3.717e+05
18 496 6.783769e+04 0.000e+00 4.035e-02 8.082e-01 3.947e+05
19 512 6.718949e+04 0.000e+00 1.000e+00 8.408e-01 7.938e+04
20 528 6.704678e+04 0.000e+00 1.000e+00 1.287e-01 3.632e+04
21 544 6.701860e+04 0.000e+00 1.000e+00 2.931e-02 2.684e+04
22 560 6.700750e+04 0.000e+00 1.000e+00 5.487e-02 2.600e+04
23 576 6.700702e+04 0.000e+00 1.000e+00 2.736e-03 1.835e+03
24 592 6.700700e+04 0.000e+00 1.000e+00 1.416e-03 1.034e+03
25 608 6.700700e+04 0.000e+00 1.000e+00 2.349e-04 3.498e+01
26 624 6.700700e+04 0.000e+00 1.000e+00 2.100e-05 6.189e+00
27 640 6.700700e+04 0.000e+00 1.000e+00 6.972e-06 1.251e+00
28 641 6.700700e+04 0.000e+00 7.000e-01 8.553e-07 4.189e-01
Optimization completed: The relative first-order optimality measure, 6.074215e-07,
is less than options.TolFun = 1.000000e-06, and the relative maximum constraint
violation, 0.000000e+00, is less than options.TolCon = 1.000000e-06.
Optimization Metric Options
relative first-order optimality = 6.07e-07 TolFun = 1e-06 (selected)
relative max(constraint violation) = 0.00e+00 TolCon = 1e-06 (selected)
0 Kommentare
Antworten (0)
Siehe auch
Kategorien
Mehr zu Nonlinear Optimization finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!