Formula for number of unknown weights in Recurrent Neural Network
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Given a recurrent neural network with two hidden layers, with "I" represent the number of features of inputs, "O" represent the number of outputs. H1 and H2 represent the number hidden neurons in layer 1 and 2. What will be the formula for number of synaptic connections in Recurrent Neural Networks in terms of I, O, H1 and H2.
1 Kommentar
Greg Heath
am 8 Jan. 2016
Bearbeitet: Greg Heath
am 8 Jan. 2016
I. Be specific:
MATLAB Version: 8.3.0.532 (R2014a)
Neural Network Toolbox Version 8.2 (R2014a)
>> lookfor recurrent
layrecnet - Layered recurrent neural network.
newhop - Design a Hopfield recurrent network.
newlrn - Create a Layered-Recurrent network.
II. Why don't you consider layrecnet and newlrn
A. Read the help documentation
B. Read the doc documentation
C. Modify the corresponding code examples
1. net1 with H2=0
2. Consider view(net1)and
Nw1 = net1.numWeightElements
3. Repeat 1 and 2 for net2 with H2~=0
III. I will compare my results with yours
Have fun,
Greg
Antworten (0)
Siehe auch
Kategorien
Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!