how to numerical solve d2y/dx2+f(x)dy/dx+y=0 in matlab. if f(x)=x^2+2x+1

18 Ansichten (letzte 30 Tage)
solving ODE for boundary condition y(0)=1,y(2)=10

Antworten (1)

Triveni
Triveni am 2 Jan. 2016
Bearbeitet: Triveni am 2 Jan. 2016
syms x y;
f=x^2+2*x+1;
df= diff(f);
d2f = diff(df);
solution = d2f + f *(df) + y;
i don't know whya re are you using isequalto 0 in "d2y/dx2+f(x)dy/dx+y=0"
or
syms x y;
f=x^2+2*x+1;
dy = diff(y);
d2y = diff(dy);
solution = d2y + f* dy + y;
  3 Kommentare
Walter Roberson
Walter Roberson am 3 Jan. 2016
Well the symbolic solution is
HeunT(3^(2/3), -3, 0, (1/3)*3^(2/3)*(x+1)) * (exp(-26/3) * HeunT(3^(2/3), -3, 0, 3^(2/3)) * (int(exp((1/3)* z1 * (z1^2 + 3*z1+3)) / HeunT(3^(2/3), -3, 0, (1/3)*3^(2/3) * (z1+1))^2, z1, 0, 2)) - (int(exp((1/3) * z1*(z1^2+3*z1+3)) / HeunT(3^(2/3), -3, 0, (1/3)*3^(2/3)*(z1+1))^2, z1, 0, x)) * (exp(-26/3) * HeunT(3^(2/3), -3, 0, 3^(2/3)) - 10 * HeunT(3^(2/3), -3, 0, (1/3)*3^(2/3)))) * exp(-(1/3) *x * (x^2 + 3*x + 3)) / (exp(-26/3) * HeunT(3^(2/3), -3, 0, 3^(2/3)) * (int(exp((1/3)*z1 * (z1^2 + 3*z1+3)) / HeunT(3^(2/3), -3, 0, (1/3)*3^(2/3) * (z1+1))^2, z1, 0, 2)) * HeunT(3^(2/3), -3, 0, (1/3)*3^(2/3)))
where z1 is a temporary variable of integration.
Notice the three unresolved integrals for which there is no known closed form solution. The symbolic solution might tell you what you need to calculate but it is not a numeric solution at all, and the original poster specifically asked for a numeric solution.

Melden Sie sich an, um zu kommentieren.

Tags

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by