Bad result / high deviation using procrustes

2 Ansichten (letzte 30 Tage)
Fritz
Fritz am 4 Dez. 2015
Bearbeitet: Fritz am 11 Dez. 2015
I try using procrustes to get the transformation between two point sets, each with 4 points. Manually I found a transformation, that aligns the two point set quite good (TFM_Ref). But the transformation calculated by procrustes (TFM_PcR) is quite bad compared to TFM_Ref.
clearvars
%%Data
S =[-52.0000 0 0;
11.5000 25.0000 0;
53.0000 0 0;
-20.0000 -42.0000 0];
T =[ 0 0 2.71;
42.4000 -23.2300 0;
104.5800 4.4400 0;
70.9000 45.1900 0];
%%Test transformation (determined manually)
TFM_Ref = [-0.9991 -0.0427 0 53.0000;
0.0427 -0.9991 0 0 ;
0 0 1.0000 0 ;
0 0 0 1.0000];
S2T_Ref = unique(transformPointsInverse(affine3d(TFM_Ref'), S),'rows');
T_Ref = unique(T,'rows');
RMSE_Ref = rms(rms(T_Ref-S2T_Ref))
%%Procrustes
[~,~,transform] = procrustes(T, S, 'scaling',0, 'reflection',0);
TFM_PrC = inv([[transform.T', transform.c(1,:)']; 0 0 0 1]);
S2T_PrC = unique(transformPointsInverse(affine3d(TFM_PrC'), S), 'rows');
RMSE_PrC = rms(rms(T_Ref-S2T_PrC))

Akzeptierte Antwort

Fritz
Fritz am 11 Dez. 2015
Bearbeitet: Fritz am 11 Dez. 2015
I found a solution using procrustes with all permutations of the source points. The best transformation is the one with the minimum dissimilarity measure.
clearvars
%%Data
Source =[-52.00 0 0;
11.50 25.00 0;
53.00 0 0;
-20.00 -42.00 0];
Target =[ 0 0 2.71;
42.40 -23.23 0 ;
104.58 4.44 0 ;
70.90 45.19 0 ];
%%Procrustes
IndexPermutations = perms(1:size(Source,1)); % All permutations of the indices of Source
for i=1:length(IndexPermutations)
[D(i,1), ~, TFMs(i)] = procrustes(Target, Source(IndexPermutations(i,:),:), ...
'scaling',0, 'reflection',0); % Try procrustes with all permutations
end
[DMin, I_DMin] = min(D); % Get the index of the smallest dissimilarity measure
TFM = [[TFMs(I_DMin).T', TFMs(I_DMin).c(1,:)']; 0 0 0 1]; % Create the transformation
Source = Source(IndexPermutations(I_DMin,:),:);
Source_tfmd = transformPointsForward(affine3d(TFM'), Source);
rms(rms(Target-Source_tfmd))

Weitere Antworten (0)

Kategorien

Mehr zu Dimensionality Reduction and Feature Extraction finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by