Does Matlab has relative square error available in Neural Network toolbox?
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Anderson
am 28 Nov. 2015
Bearbeitet: Greg Heath
am 5 Dez. 2015
I have seen that MSE, SSE, MAE and SAE are possible training functions of a neural network in Matlab. Does it have relative square error available?
0 Kommentare
Akzeptierte Antwort
Greg Heath
am 3 Dez. 2015
The relative (i.e., NORMALIZED) square error is the ratio of the mean-square-error of the model, MSE, to the mean-square-error of the NAIVE CONSTANT-OUTPUT MODEL, MSE00. To minimize the mse of the latter model, the constant output is just the target mean. Correspondingly, MSE00 is just the average target variance.
MSE00 = mean(var(target',1))
Since
MSE = mse(target-output);
NMSE = MSE/MSE00 % "N"ormalized, or relative, mse.
The coefficient-of-variation or Rsquared, Rsq (See WKIPEDIA)
Rsq = 1 - NMSE
is the fraction of target variance that is "explained by the model.
I have zillions of posts in both the NEWSGROUP and ANSWERS using the above variables. In some of them I have gone into more detail than I have here.
Hope this helps.
Thank you for formally accepting my answer
Greg
1 Kommentar
Greg Heath
am 5 Dez. 2015
Bearbeitet: Greg Heath
am 5 Dez. 2015
Most of the time I used R2 instead of Rsq.
SEARCH NEWSGROUP ANSWERS
NEURAL NMSE 51 HITS 100 HITS
NEURAL R2 144 HITS 113 HITS
HOPE THIS HELPS.
GREG
Weitere Antworten (1)
Dave Behera
am 2 Dez. 2015
The only error functions available in the Neural Network Toolbox are MSE, SSE, MAE and SAE. There is no function for calculating the relative square error.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!