How to perform the maximum like ratio test?

2 Ansichten (letzte 30 Tage)
artu' breuer
artu' breuer am 19 Okt. 2015
Hi,
I have to test if my data have a gaussian or a double gaussian behaviour with the MAXIMUM LIKELIHOOD RATIO TEST. I have a problem defining a double gaussian and use it as a pdf. The data are composed by an histogram. I normalized it so that the integral is <=1 Below a possible code:
>> data_norm = normrnd(0,1,1000,1);
>> data = hist(data_norm,14);
>> x = 1:14;
>> figure;
>> plot(x,data);
>> data = data/sum(data); % normalize to unit length. Sum of h now will be 1.
>> figure;
>> plot(x,data)
>> Gauss_mle = mle(data);
>> Double_gauss_pdf=@(sigma1,mu1,sigma2,mu2) ((1/sqrt(2*pi*sigma1^2)*exp((x-mu1).^2/(2*sigma1^2))+1/sqrt(2*pi*sigma2^2)*exp((x-mu2).^2/(2*sigma2^2))));
>> Double_gauss_mle = mle(data,'pdf',Double_gauss_pdf,'start',[0;1;0;1]);
When I compute Double_gauss_mle it gives me:
Error using mlecustom (line 166)
Error evaluating the user-supplied pdf function '@(sigma1,mu1,sigma2,mu2)((1/sqrt(2*pi*sigma1^2)*exp((x-mu1).^2/(2*sigma1^2))+1/sqrt(2*pi*sigma2^2)*exp((x-mu2).^2/(2*sigma2^2))))'.
Error in mle (line 229) phat = mlecustom(data,varargin{:});
Caused by:
Error using @(sigma1,mu1,sigma2,mu2)((1/sqrt(2*pi*sigma1^2)*exp((x-mu1).^2/(2*sigma1^2))+1/sqrt(2*pi*sigma2^2)*exp((x-mu2).^2/(2*sigma2^2))))
Too many input arguments.
I also do not know exactly how to proceed once I have the maximum likelihood estimate.
Thank you in advance.

Antworten (0)

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by