Use Classification Neural Network Model for another Dataset
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
mustafa alnasser
am 19 Sep. 2015
Kommentiert: Greg Heath
am 20 Sep. 2015
Dear All; I have built an AI model to classify the data using a dataset. Then i try to test this model to classify an external data set but it does not work properly because the code is not properly made , the code is below , could you help me in that :
clc; clear; close all; %Read The data [x1,TXT,RAW]=xlsread('ALL2.xlsx','lnRe'); [t1,TXT2,RAW2]=xlsread('ALL2.xlsx','OUT2');
x=x1';
t=t1';
% Build the model
net= patternnet ([100]);
% net.divideParam.trainRatio = 70/100;
% net.divideParam.valRatio = 15/100;
% net.divideParam.testRatio = 15/100;
% view(net)
net=init(net);
[net,tr] = train(net,x,t);
% Test the Network [x2,TXT3,RAW3]=xlsread('expsettest.xlsx','Ln(Re)'); [t2,TXT4,RAW4]=xlsread('expsettest.xlsx','out-test'); xt=x2'; tt=t2'; outputs = net( xt); errors = gsubtract(tt,outputs); performance = perform(net,tt,outputs)
figure, plotconfusion(tt,outputs)
0 Kommentare
Akzeptierte Antwort
Greg Heath
am 20 Sep. 2015
100 hidden nodes appears to be a ridiculous number.
Why don't you start by just using all defaults.
help patternnet
doc patternnet
Then Search NEWSGROUP and ANSWERS using
greg patternnet
Hope this helps.
Thank you for formally accepting my answer
Greg
2 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!