How to integrate a control system by ode45 with PID control input ?
33 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Chuguang Pan
am 20 Nov. 2025 um 14:07
Kommentiert: Chuguang Pan
am 21 Nov. 2025 um 2:15
I want to simulate a control system using ode45 function. The system model can be expressed as
, where the control input u is the PID control which can be expressed as
. The
is the desired state. My question is how to integrate the error in the ode model as illustrated in the following code example, since we only obtain the current time state X when the f function is called
function dX = f(t,X,P)
% ...
% ...
u = P.Kp * (P.Xd - X) + P.Ki * (P.Xd - X) + ... ; % How to integrate the error Xd - X ?
end
0 Kommentare
Akzeptierte Antwort
Sam Chak
am 20 Nov. 2025 um 15:25
Perhaps you can try this approach.
G = tf(1, [1, 0, 0]);
opt = pidtuneOptions('DesignFocus', 'disturbance-rejection');
wc = 5;
C = pidtune(G, 'PID', wc, opt);
% Parameters
P.Xd = 3; % desired state for X(1)
P.Kp = C.Kp; % proportional gain
P.Ki = C.Ki; % integral gain
P.Kd = C.Kd; % derivative gain
% ODE function
function dX = f(t, X, P)
% error
e = P.Xd - X(1);
% PID controller
u = P.Kp*e + P.Ki*X(3) - P.Kd*X(2);
% disturbance
d = 1;
% original 2nd-order system
dX(1) = X(2);
dX(2) = d + u;
% X(3) is ∫ e dt
dX(3) = e;
% system dynamics
dX = [dX(1)
dX(2)
dX(3)];
end
% Solve and plot
[t, X] = ode45(@(t, X) f(t, X, P), [0, 10], zeros(3, 1));
plot(t, X(:,1)), grid on
title('Time response for state x_{1}')
xlabel('t')
ylabel('x_{1}')
Weitere Antworten (1)
Torsten
am 20 Nov. 2025 um 14:19
Add a second differential equation
dV/dt = P.Xd - X
with initial condition
V(0) = 0
Then
V(t) = integral_{0}^{t} (P.Xd - X) dt
0 Kommentare
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!
