complex number : real part and imaginary part

45 Ansichten (letzte 30 Tage)
yogeshwari patel
yogeshwari patel vor etwa 23 Stunden
Bearbeitet: Torsten vor etwa 20 Stunden
syms x mu
syms t %c
alpha=1
U=zeros(1,1,'sym');
A=zeros(1,1,'sym');
B=zeros(1,1,'sym');
C=zeros(1,1,'sym');
D=zeros(1,1,'sym');
series1(x,t)=sym(zeros(1,1));
%%%%%%%%%%%%%%%%%%%%% initial condition
%mu=1
%U(1)=mu*exp(1i*x)
U(1)=mu*(cos(x)+1i*sin(x))
u=conj(U(1))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1
A(1)=0;
B(1)=0;
C(1)=0;
D(1)=0;
for j=1:i
for k=1:j
A(1)=A(1)+U(k)*U(j-k+1)*U(i-j+1);
B(1)=B(1)+U(k)*diff(U(j-k+1),x,1)*conj(U(i-j+1));
C(1)=C(1)+U(k)*U(j-k+1)*diff(U(i-j+1),x,1);
for l=1:k
for m=1:l
D(1)=D(1)+U(m)*U(l-m+1)*U(k-l+1)*conj(U(j-k+1))*conj(U(i-j+1));
end
end
end
end
U(i+1)=gamma(((i-1)*alpha)+1)/gamma((alpha*(i+1-1))+1)*(1i*diff(U(k),x,2)+2i*B(1)*2i*C(1)+i*D(1));
end
for k=1:2
series1(x,t)=simplify(series1(x,t)+U(k)*(power(t,(k-1)*alpha)));
%series2(x,t)=simplify(series2(x,t)+V(k)*(power(t,(k-1)*alpha)));
end
expand(series1);
m=real(expand(series1))
the last line does display real and imaginary part of the series
  6 Kommentare
yogeshwari patel
yogeshwari patel vor etwa 22 Stunden
x , t real variable and mu are real constant . U(1)=mu*(cos(x)+1i*sin(x)) is complex function . So how should i use the command
Torsten
Torsten vor etwa 20 Stunden
Bearbeitet: Torsten vor etwa 20 Stunden
Define x, t and mu as "syms real" as done in @Walter Roberson 's answer.
By default, all symbolic variables are assumed to be of type complex.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Walter Roberson
Walter Roberson vor etwa 21 Stunden
syms x mu real
syms t real %c
alpha=1
alpha = 1
U=zeros(1,1,'sym');
A=zeros(1,1,'sym');
B=zeros(1,1,'sym');
C=zeros(1,1,'sym');
D=zeros(1,1,'sym');
series1(x,t)=sym(zeros(1,1));
%%%%%%%%%%%%%%%%%%%%% initial condition
%mu=1
%U(1)=mu*exp(1i*x)
U(1)=mu*(cos(x)+1i*sin(x))
u=conj(U(1))
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
for i=1
A(1)=0;
B(1)=0;
C(1)=0;
D(1)=0;
for j=1:i
for k=1:j
A(1)=A(1)+U(k)*U(j-k+1)*U(i-j+1);
B(1)=B(1)+U(k)*diff(U(j-k+1),x,1)*conj(U(i-j+1));
C(1)=C(1)+U(k)*U(j-k+1)*diff(U(i-j+1),x,1);
for l=1:k
for m=1:l
D(1)=D(1)+U(m)*U(l-m+1)*U(k-l+1)*conj(U(j-k+1))*conj(U(i-j+1));
end
end
end
end
U(i+1)=gamma(((i-1)*alpha)+1)/gamma((alpha*(i+1-1))+1)*(1i*diff(U(k),x,2)+2i*B(1)*2i*C(1)+i*D(1));
end
for k=1:2
series1(x,t)=simplify(series1(x,t)+U(k)*(power(t,(k-1)*alpha)));
%series2(x,t)=simplify(series2(x,t)+V(k)*(power(t,(k-1)*alpha)));
end
expand(series1);
m=real(expand(series1));
disp(char(m))
mu*cos(x) + mu*t*sin(x) + mu^5*t*cos(x)^5 + 4*mu^6*t*cos(x)^6 + 4*mu^6*t*sin(x)^6 + 2*mu^5*t*cos(x)^3*sin(x)^2 - 20*mu^6*t*cos(x)^2*sin(x)^4 - 20*mu^6*t*cos(x)^4*sin(x)^2 + mu^5*t*cos(x)*sin(x)^4

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by