How can I fix ODE45 returning a straight line when using specific `tspan` points, instead of showing dynamic behavior over the time range?
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
How can I fix ODE45 returning a straight line when using specific `tspan` points, instead of showing dynamic behavior over the time range?
5 Kommentare
Torsten
am 20 Sep. 2024
Bearbeitet: Torsten
am 20 Sep. 2024
The code below works, but I doubt it is really what you want. Try to explain yourself more clearly (maybe by using the Google Translator).
% Define parameters
Kf_Max = 100; % maximum forward rate
Kb_Max = 80; % maximum backward rate
Kb_Min = 10 ;
RLC = [0.1, 0.5, 10, 1]; % RLC values
TauKf_ON = -0.1; % TauKf_ON
TauKf_OFF = -0.1; % TauKf_OFF
TauKb_ON = -0.01; % TauKb_ON
TauKb_OFF = -0.01; % TauKb_ON
PhaseTimes = [0,10, 1000, 1500, 2000];% phase times (each row defines a phase)
% Example initial conditions for non-active and active receptor concentrations
Non_Active_Receptor_concentration = 100; % Initial non-active receptor concentration (as a vector)
Active_Receptor_concentration = 0; % Initial active receptor concentration (as a vector)
[t, Non_Active_Receptor_concentration, Active_Receptor_concentration, PhaseResults, Kf_LMax, Kb] = SimfileNPhase (Kf_Max, RLC, TauKf_ON, TauKf_OFF, ...
Kb_Max, Kb_Min, TauKb_ON, TauKb_OFF, PhaseTimes,Non_Active_Receptor_concentration, Active_Receptor_concentration);
function [t, Non_Active_Receptor_concentration, Active_Receptor_concentration, PhaseResults, Kf_LMax, Kb] = SimfileNPhase(Kf_Max, RLC, TauKf_ON, TauKf_OFF, ...
Kb_Max, Kb_Min, TauKb_ON, TauKb_OFF, PhaseTimes, Non_Active_Receptor_concentration, Active_Receptor_concentration)
% Ensure that Non_Active_Receptor_concentration and Active_Receptor_concentration are column vectors
Non_Active_Receptor_concentration = Non_Active_Receptor_concentration(:);
Active_Receptor_concentration = Active_Receptor_concentration(:);
% Set initial conditions
initial_conditions = [Non_Active_Receptor_concentration(1); Active_Receptor_concentration(1)];
% Set ODE options for step size
options = odeset('MaxStep', 0.01, 'RelTol', 1e-6, 'AbsTol', 1e-8);
t = [];
y = [];
for i = 1:numel(PhaseTimes)-1
PhaseTime = [PhaseTimes(i) PhaseTimes(i+1)];
% Define functions for forward and backward reaction rates
Kf_L = @(t) calculate_kf(t, PhaseTime, Kf_Max, RLC(i), TauKf_ON, TauKf_OFF);
Kb = @(t) calculate_kb(t, PhaseTime, Kb_Max, Kb_Min, RLC(i), TauKb_ON, TauKb_OFF);
[T,Y] = ode45(@(t,y)ode_LR(t,y,Kf_L,Kb),PhaseTime,initial_conditions, options);
initial_conditions = Y(end,:);
t = [t;T];
y = [y;Y];
end
% Extract the concentrations
Non_Active_Receptor_concentration = y(:, 1);
Active_Receptor_concentration = y(:, 2);
% Calculate forward and backward reaction rates over time
Kf_values = arrayfun(Kf_L, t);
Kb_values = arrayfun(Kb, t);
% Plot active and non-active receptor concentrations
figure;
plot(t, Non_Active_Receptor_concentration, 'r', 'DisplayName', 'Non-Active Receptor Concentration');
hold on;
plot(t, Active_Receptor_concentration, 'b', 'DisplayName', 'Active Receptor Concentration');
legend;
xlabel('Time');
ylabel('Concentration');
title('Receptor Concentrations');
hold off;
% Plot forward and backward reaction rates
figure;
plot(t, Kf_values, 'k', 'DisplayName', 'Forward Reaction Rate');
hold on;
plot(t, Kb_values, 'b', 'DisplayName', 'Backward Reaction Rate');
legend;
xlabel('Time');
ylabel('Reaction Rate');
title('Reaction Rates');
hold off;
% Calculate phase results
PhaseResults = arrayfun(@(i) ...
calculate_phase(t, Active_Receptor_concentration, PhaseTimes(:,i:i+1), RLC(i)) ...
, 1:(size(PhaseTimes, 2)-1), 'UniformOutput', false);
PhaseResults = vertcat(PhaseResults{:}); % Concatenate results
% Calculate maximum forward reaction rate using element-wise division
Kf_LMax = Kf_Max * (RLC ./ (RLC + 1));
% Write Phase results to CSV
for i = 1:size(PhaseResults, 1)
PhaseTable = struct2table(PhaseResults(i));
writetable(PhaseTable, ['Phase', num2str(i), '.csv']);
end
end
% Nested function for calculating Kf_L based on time
function Kf_L = calculate_kf(t, PhaseTimes, Kf_Max, RLC, TauKf_ON, TauKf_OFF)
% Calculate maximum Kf_L based on RLC values using element-wise division
Kf_LMax = Kf_Max * (RLC ./ (1 + RLC));
% Default Kf_L to the maximum value of the first phase
Kf_L = Kf_LMax(1);
% Number of phases
num_phases = numel(RLC);
% Iterate through each phase to determine the current phase based on time
for j = 1:num_phases
T_start = PhaseTimes(j); % Start time of the current phase
if j < num_phases
T_end = PhaseTimes(j + 1); % End time of the current phase
else
T_end = inf; % Handle last phase separately
end
% Check if the current time t is within the current phase
if t >= T_start && t < T_end
if j == 1
% For the first phase, use the maximum value directly
Kf_L = Kf_LMax(j);
else
% Time at the end of the previous phase
prev_end = PhaseTimes(j-1);
% Determine if RLC is increasing or decreasing and calculate Kf_L
if RLC(j) > RLC(j - 1)
% Increasing phase
Kf_end = Kf_LMax(j) - (Kf_LMax(j) - Kf_LMax(j - 1)) * exp(TauKf_ON * (t - prev_end));
Kf_L = Kf_LMax(j) + (Kf_end - Kf_LMax(j - 1)) * exp(TauKf_OFF * (t - prev_end));
elseif RLC(j) < RLC(j - 1)
% Decreasing phase
Kf_end = Kf_LMax(j) - (Kf_LMax(j) - Kf_LMax(j - 1)) * exp(TauKf_ON * (t - prev_end));
Kf_L = Kf_LMax(j) + (Kf_end - Kf_LMax(j - 1)) * exp(TauKf_OFF * (t - prev_end));
end
end
return; % Exit the function after finding the correct phase
end
end
end
% Nested function for calculating Kb based on time
function Kb = calculate_kb(t, PhaseTimes, Kb_Max, Kb_Min, RLC, TauKb_ON, TauKb_OFF)
% Default to Kb_Max
Kb = Kb_Max;
% If all RLC values are the same, set Kb to Kb_Max and return
if all(RLC == RLC(1))
Kb = Kb_Max;
return;
end
% Iterate through each phase based on time
for j = 1:numel(RLC)
T_start = PhaseTimes(j); % Start time of the current phase
if j < numel(PhaseTimes)
T_end = PhaseTimes(j + 1); % End time of the current phase
else
T_end = inf; % For the last phase
end
% Check if current time is within the current phase
if t >= T_start && t < T_end
if j == 1
% In the first phase, set Kb to Kb_Max
Kb = Kb_Max;
else
prev_end = PhaseTimes(j-1); % Time at the end of the previous phase
% Handle increasing or decreasing RLC values
if RLC(j) > RLC(j - 1)
% Increasing phase
Kb_end = Kb_Max - (Kb_Max - Kb_Min) * exp(TauKb_ON * (t - prev_end));
Kb = Kb_Min + (Kb_end - Kb_Min) * exp(TauKb_OFF * (t - prev_end));
elseif RLC(j) < RLC(j - 1)
% Decreasing phase
Kb_end = Kb_Max - (Kb_Max - Kb_Min) * exp(TauKb_ON * (t - prev_end));
Kb = Kb_Min + (Kb_end - Kb_Min) * exp(TauKb_OFF * (t - prev_end));
end
end
return; % Exit once the correct phase is found
end
end
end
% ODE for calculation of the derivative
function dydt = ode_LR(t, y, Kf_L, Kb)
Non_Active_Receptor_concentration = y(1);
Active_Receptor_concentration = y(2);
% Call the function handles for Kf_L and Kb
dNonActiveReceptor_dt = -Kf_L(t) * Non_Active_Receptor_concentration + Kb(t) * Active_Receptor_concentration;
dActiveReceptor_dt = Kf_L(t) * Non_Active_Receptor_concentration - Kb(t) * Active_Receptor_concentration;
dydt = [dNonActiveReceptor_dt; dActiveReceptor_dt];
end
% Results of all the Phase Values
function result = calculate_phase(t, Active_Receptor_concentration, PhaseTimes, RLC)
T_start = PhaseTimes(:,1);
T_end = PhaseTimes(:,2);
Phase_indices = (t >= T_start & t <= T_end);
Phase_concentration = Active_Receptor_concentration(Phase_indices);
Phase_time = t(Phase_indices);
% Calculate peak and steady-state values
[Rpeak, Tpeak, peak_type] = findpeak(Phase_time, Phase_concentration);
Rss = mean(Active_Receptor_concentration(t >= (T_end - 10) & t <= T_end));
% Calculate the T50 (time to reach half of peak value)
half_peak_value = (Rss + Rpeak) / 2;
[~, idx_50_percent] = min(abs(Phase_concentration - half_peak_value));
T50 = Phase_time(idx_50_percent) - Tpeak;
% Calculate other metrics
ratio_Rpeak_Rss = Rpeak / Rss;
Delta = Rpeak - Rss;
L = RLC;
% Package results in a struct
result.Rpeak = Rpeak;
result.Rss = Rss;
result.Tpeak = Tpeak;
result.T50 = T50;
result.ratio_Rpeak_Rss = ratio_Rpeak_Rss;
result.Delta = Delta;
result.L = L;
result.peak_type = peak_type;
end
% Customize function for Calculating the Peak values and time
function [Rpeak, Tpeak, peak_type] = findpeak(time, concentration)
% Compute the derivative
dt = diff(time);
dy = diff(concentration);
derivative = dy ./ dt;
% Find zero-crossings of the derivative
zero_crossings = find(diff(sign(derivative)) ~= 0);
% Initialize output variables
Rpeak = NaN;
Tpeak = NaN;
peak_type = 'None';
% Check if there are zero crossings
if ~isempty(zero_crossings)
% Identify peaks and troughs by examining the sign changes
max_indices = zero_crossings(derivative(zero_crossings) > 0 & derivative(zero_crossings + 1) < 0);
min_indices = zero_crossings(derivative(zero_crossings) < 0 & derivative(zero_crossings + 1) > 0);
% Check if there are maxima or minima
if ~isempty(max_indices) || ~isempty(min_indices)
if ~isempty(max_indices) && ~isempty(min_indices)
% Find the highest maximum
[Rpeak_max, maxIdx] = max(concentration(max_indices));
% Find the lowest minimum
[Rpeak_min, minIdx] = min(concentration(min_indices));
% Determine whether the highest maximum is greater or the lowest minimum is smaller
if Rpeak_max >= abs(Rpeak_min)
Rpeak = Rpeak_max;
Tpeak = time(max_indices(maxIdx));
peak_type = 'High';
else
Rpeak = Rpeak_min;
Tpeak = time(min_indices(minIdx));
peak_type = 'Low';
end
% If only maxima exist
elseif ~isempty(max_indices)
[Rpeak, maxIdx] = max(concentration(max_indices));
Tpeak = time(max_indices(maxIdx));
peak_type = 'High';
% If only minima exist
elseif ~isempty(min_indices)
[Rpeak, minIdx] = min(concentration(min_indices));
Tpeak = time(min_indices(minIdx));
peak_type = 'Low';
end
end
end
end
Torsten
am 23 Sep. 2024
Bearbeitet: Torsten
am 23 Sep. 2024
You ask me questions about the code that you made. How should I know better than you do ?
I set the initial condition for the new phase to the end value of the last phase. Maybe that's the problem.
for i = 1:numel(PhaseTimes)-1
PhaseTime = [PhaseTimes(i) PhaseTimes(i+1)];
% Define functions for forward and backward reaction rates
Kf_L = @(t) calculate_kf(t, PhaseTime, Kf_Max, RLC(i), TauKf_ON, TauKf_OFF);
Kb = @(t) calculate_kb(t, PhaseTime, Kb_Max, Kb_Min, RLC(i), TauKb_ON, TauKb_OFF);
[T,Y] = ode45(@(t,y)ode_LR(t,y,Kf_L,Kb),PhaseTime,initial_conditions, options);
initial_conditions = Y(end,:);
t = [t;T];
y = [y;Y];
end
Antworten (1)
Steven Lord
am 20 Sep. 2024
Your ode_LR function is defined to accept four input arguments, the two required arguments plus two additional parameters.
function dydt = ode_LR(t, y, Kf_L, Kb)
How are you using it, based on what's displayed in the error message?
Error in SimfileNPhase>@(t,y)ode_LR(t,y,RLC(i)) (line 20)
[t, y] = ode45(@(t,y)ode_LR(t,y,RLC(i)),PhaseTime,initial_conditions, options);
Not only are you not calling it with enough input arguments (the anonymous function calls it with three inputs) the comment inside ode_LR implies that the Kf_L and Kb input arguments are function handles.
% Call the function handles for Kf_L and Kb
dNonActiveReceptor_dt = -Kf_L(t) * Non_Active_Receptor_concentration + Kb(t) * Active_Receptor_concentration;
Is RLC(i), the value that you pass into ode_LR as the third input argument, a function handle? No, it is not. It's a numeric array. And t (the value that ode45 passes into your function as the first required input) is not guaranteed to be a valid index into a numeric array.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Power Converters finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!