trying to find the polynomial equation representing the given four second-order differential equations

3 Ansichten (letzte 30 Tage)
For the following problem in the first image i get the error pictured in the third image when trying to solve the 4 second-order differential equations using numerical methods. I am trying to use Heun's method for solving second-order differential equations and from here getting the x and y values corresponding to the function. Then taking these values and putting them into the least-square method to find the polynomial equation that best represents the system of equations. The third image is of the free-body diagram representing this system, then follows the code, if anyone can see where I need to adjust the code to run correctly this would be much appreciated.
MATLAB CODE:
% 4 Equations representing the system working with
% MfXf"=Ksf([Xb-(L1*theta)]-Xf)+Bsf([Xb'-(L1*theta')-Xf')-(Kf*Xf);
% MrXr"=Ksr([Xb+(L2*theta)]-Xr)+Bsr([Xb'+(L2*theta')]-Xr')-(Kr*Xr) ;
% MbXb"=Ksf([Xb-(L1*theta)]-Xf)+Bsf([Xb'-(L1*theta')]-Xf')+Ksr([Xb+(L2*theta)]-Xr)+Bsr([Xb'+(L2*theta')]-Xr')+fa(t);
% Ic*theta"={-[Ksf(Xf-(L1*theta))*L1]-[Bsf(Xf'-(L1*theta'))*L1]+[Ksr(Xr+(L2*theta))*L2]+[Bsr(Xr'+(L2*theta'))*L2]+[fa(t)*L3]};
clc
clear
%-------------------------------------------------SYSTEM_PARAMETERS----------------------------------------------------------------------------------------------------------------------------------------------------------
Ic=1356; %kg-m^2
Mb=730; %kg
Mf=59; %kg
Mr=45; %kg
Kf=23000; %N/m
Ksf=18750; %N/m
Kr=16182; %N/m
Ksr=12574; %N/m
Bsf=100; %N*s/m
Bsr=100; %N*s/m
L1=1.45; %m
L2=1.39; %m
L3=0.67; %m
t=[0:20]; % time from 0 to 20 seconds
%Initial Conditions x=(0)=0 dXf/dt(0)=y(0)=0 ;
%t from 0 to 1 h=dx=0.5;
x0=0; %x at initial condition
y0=0; %y at initial condition
t0=0; %t at the start
dx=5; %delta(x) or h
h=dx;
tm=20; %what value of (x) you are ending at
syms Xf(t) Xr(t) Xb(t) theta(t) fa(t) Y
Xf_1=diff(Xf,t);
Xf_2=diff(Xf,t,2);
Xr_1=diff(Xr,t);
Xr_2=diff(Xr,t,2);
Xb_1=diff(Xb,t);
Xb_2=diff(Xb,t,2);
theta_1=diff(theta,t);
theta_2=diff(theta,t,2);
%%%% MfXf"=Ksf((Xb-(L1*theta))-Xf)+Bsf((Xb'-(L1*theta'))-Xf')-(Kf*Xf);
%anything in [] below indicates a deritive
% Mf*[(d^2Xf)/(dt^2)] = Ksf*((Xb-(L1*theta))-Xf)+Bsf*(([(dXb)/(dt)]-(L1*[(dtheta)/(dt)])-[(dXf)/(dt)])-(Kf*Xf);
Mf*Xf_2-((Ksf*((Xb-(L1*theta))-Xf)+Bsf*((Xb_1-(L1*theta_1)-Xf_1)-(Kf*Xf))))==0;
f2_YF=isolate(Mf*Xf_2-((Ksf*((Xb-(L1*theta))-Xf)+Bsf*((Xb_1-(L1*theta_1)-Xf_1)-(Kf*Xf))))==0,Xf_2);
f2_Yf=subs(f2_YF,[Xf_2 Xf_1],[Xf_1 Y])
f2_Yf = 
f2_Yf=rhs(f2_Yf)
f2_Yf = 
%dXf/dt=y_f-->ASSUMED
%dXf/dt=f1_f(x,y,t)=y_f
%dYf/dt=f2_f(x,y,t)=f2_Yf
%%%% MrXr"=Ksr((Xb+(L2*theta))-Xr)+Bsr((Xb'+(L2*theta'))-Xr')-(Kr*Xr);
%anything in [] below indicates a deritive
% Mf*[(d^2Xr)/(dt^2)] = Ksf*((Xb-(L1*theta))-Xf)+Bsr*(([(dXb)/(dt)]-(L2*[(dtheta)/(dt)])-[(dXr)/(dt)])-(Kf*Xf);
Mr*Xr_2-((Ksr*((Xb+(L2*theta))-Xr)+Bsr*((Xb_1+(L2*theta_1))-Xr_1)-(Kr*Xr)))==0;
f2_YR=isolate(Mr*Xr_2-((Ksr*((Xb+(L2*theta))-Xr)+Bsr*((Xb_1+(L2*theta_1))-Xr_1)-(Kr*Xr)))==0,Xr_2);
f2_Yr=subs(f2_YR,[Xr_2 Xr_1],[Xr_1 Y])
f2_Yr = 
f2_Yr=rhs(f2_Yr)
f2_Yr = 
%dXr/dt=y_r-->ASSUMED
%dXr/dt=f1_r(x,y,t)=y_r
%dYr/dt=f2_r(x,y,t)=f2_Yr
%%%% MbXb"=Ksf([Xb-(L1*theta)]-Xf)+Bsf([Xb'-(L1*theta')]-Xf')+Ksr([Xb+(L2*theta)]-Xr)+Bsr([Xb'+(L2*theta')]-Xr')+fa(t);
%anything in [] below indicates a deritive fa(t) given as 10e^(-(5t))
% Mb*[(d^2Xb)/(dt^2)]=Ksf*((Xb-(L1*theta))-Xf)+Bsf*(([(dXb)/(dt)]-(L1*[(dtheta)/(dt)]))-[(dXf)/(dt)])+Ksr*([Xb+(L2*theta)]-Xr)+Bsr( (([(dXb)/(dt)]+(L2*[(dtheta)/(dt)]))-[(dXr)/(dt)]))+fa(t);
Mb*Xb_2-((Ksf*((Xb-(L1*theta))-Xf)+Bsf*((Xb_1-(L1*theta_1))-Xf_1)+Ksr*((Xb+(L2*theta))-Xr)+Bsr*((Xb_1+(L2*theta_1))-Xr_1))==(10*exp(-(5*t))));
f2_YB=Xb_2==(-Ksf*((Xb-(L1*theta))-Xf)-Bsf*((Xb_1-(L1*theta_1))-Xf_1)-Ksr*((Xb+(L2*theta))-Xr)-Bsr*((Xb_1+(L2*theta_1))-Xr_1)+(10*exp(-(5*t))))/Mb;
f2_Yb=subs(f2_YB,[Xb_2 Xb_1],[Xb_1 Y])
f2_Yb(t) = 
f2_Yb=rhs(f2_Yb)
f2_Yb(t) = 
%dXb/dt=y-->ASSUMED
%dXb/dt=f1_b(x,y,t)=y_b
%dYb/dt=f2_b(x,y,t)=f2_Yb
%%%% Ic*theta"={-(Ksf*(Xf-(L1*theta))*L1)-(Bsf*(Xf'-(L1*theta'))*L1)+(Ksr*(Xr+(L2*theta))*L2)+(Bsr*(Xr'+(L2*theta'))*L2)+(fa(t)*L3)};
%anything in [] below indicates a deritive fa(t) given as 10e^(-(5t))
%Ic*[(d^2theta)/(dt^2)]=(-(Ksf*(Xf-(L1*theta))*L1)-(Bsf*([dXf/dt]-(L1*[(dtheta)/(dt)]))*L1)+(Ksr*(Xr+(L2*theta))*L2)+(Bsr*([(dXr)/(dt)]+(L2*[(dtheta)/(dt)]))*L2)+(fa(t)*L3));
theta_2==((-(Ksf*(Xf-(L1*theta))*L1)-(Bsf*(Xf_1-(L1*theta_1))*L1)+(Ksr*(Xr+(L2*theta))*L2)+(Bsr*(Xr_1+(L2*theta_1))*L2)+((10*exp(-(5*t)))*L3)))/Ic;
Ic*theta_2-(-(Ksf*(Xf-(L1*theta))*L1)-(Bsf*(Xf_1-(L1*theta_1))*L1)+(Ksr*(Xr+(L2*theta))*L2)+(Bsr*(Xr_1+(L2*theta_1))*L2))==(10*exp(-(5*t)))*L3;
f2_YTheta=theta_2==((-Ksf*(Xf-(Xb-(L1*theta)))*L1) - (Bsf*(Xf_1-(Xb_1-(L1*theta_1)))*L1) + (Ksr*(Xr-(Xb+(L2*theta)))*L2) + (Bsr*(Xr_1-(Xb_1+(L2*theta_1)))*L2) + ((10*exp(-(5*t)))*L3))/Ic;
f2_Ytheta=subs(f2_YTheta,[theta_2 theta_1],[theta_1 Y])
f2_Ytheta(t) = 
f2_Ytheta=rhs(f2_Ytheta)
f2_Ytheta(t) = 
%dXb/dt=y-->ASSUMED
%dXb/dt=f1_theta(x,y,t)=y_theta
%dYb/dt=f2_theta(x,y,t)=f2_Ytheta
syms x y_f y_r y_b y_theta t
%==INPUT SECTION==%
fx_f=@(x,y,t)y_f;
fy_f=@(x,y,t)f2_Yf;
fx_r=@(x,y,t)y_r;
fy_r=@(x,y,t)f2_Yr;
fx_b=@(x,y,t)y_b;
fy_b=@(x,y,t)f2_Yb;
fx_theta=@(x,y,t)y_theta;
fy_theta=@(x,y,t)f2_Ytheta;
%==CALCULATIONS SECTION==%
tn=t0:h:tm;
xn_f(1)=x0;
yn_f=y0;
xn_r(1)=x0;
yn_r=y0;
xn_b(1)=x0;
yn_b=y0;
xn_theta(1)=x0;
yn_theta=y0;
for i=1:length(tn)
%==EULER'S METHOD
xn_f(i+1)=xn_f(i)+fx_f(xn_f(i),yn_f(i),tn(i))*h;
yn_f(i+1)=yn_f(i)+fy_f(xn_f(i),yn_f(i),tn(i))*h;
xn_r(i+1)=xn_r(i)+fx_r(xn_r(i),yn_r(i),tn(i))*h;
yn_r(i+1)=yn_r(i)+fy_r(xn_r(i),yn_r(i),tn(i))*h;
xn_b(i+1)=xn_b(i)+fx_b(xn_b(i),yn_b(i),tn(i))*h;
yn_b(i+1)=yn_b(i)+fy_b(xn_b(i),yn_b(i),tn(i))*h;
xn_theta(i+1)=xn_theta(i)+fx_theta(xn_theta(i),yn_theta(i),tn(i))*h;
yn_theta(i+1)=yn_theta(i)+fy_theta(xn_theta(i),yn_theta(i),tn(i))*h;
%==NEXT 3 LINES ARE FOR HEUN'S METHOD
tn(i+1)=tn(i)+h;
xn_f(i+1)=xn_f(i)+0.5*(fx_f(xn_f(i),yn_f(i),tn(i))+fx_f(xn_f(i+1),yn_f(i+1),tn(i+1)))*h;
yn_f(i+1)=yn_f(i)+0.5*(fy_f(xn_f(i),yn_f(i),tn(i))+fy_f(xn_f(i+1),yn_f(i+1),tn(i+1)))*h;
xn_r(i+1)=xn_r(i)+0.5*(fx_r(xn_r(i),yn_r(i),tn(i))+fx_r(xn_r(i+1),yn_r(i+1),tn(i+1)))*h;
yn_r(i+1)=yn_r(i)+0.5*(fy_r(xn_r(i),yn_r(i),tn(i))+fy_r(xn_r(i+1),yn_r(i+1),tn(i+1)))*h;
xn_b(i+1)=xn_b(i)+0.5*(fx_b(xn_b(i),yn_b(i),tn(i))+fx_b(xn_b(i+1),yn_b(i+1),tn(i+1)))*h;
yn_b(i+1)=yn_b(i)+0.5*(fy_b(xn_b(i),yn_b(i),tn(i))+fy_b(xn_b(i+1),yn_b(i+1),tn(i+1)))*h;
xn_theta(i+1)=xn_theta(i)+0.5*(fx_theta(xn_theta(i),yn_theta(i),tn(i))+fx_theta(xn-theta(i+1),yn_theta(i+1),tn(i+1)))*h;
yn_theta(i+1)=yn_theta(i)+0.5*(fy_theta(xn_theta(i),yn_theta(i),tn(i))+fy_theta(xn-theta(i+1),yn_theta(i+1),tn(i+1)))*h;
fprintf('t=%0.2f\t x_f=%0.3f\t y_f=%0.3f\t x_r=%0.3f\t y_r=%0.3f\t x_b=%0.3f\t y_b=%0.3f\t x_theta=%0.3f\t y_theta=%0.3f\n',tn(i),xn_f(i),yn_f(i),xn_r(i),yn_r(i),xn_b(i),yn_b(i),xn_theta(i),yn_theta(i))
end
Unable to perform assignment because value of type 'sym' is not convertible to 'double'.

Caused by:
Error using mupadengine/feval2char
Unable to convert expression containing symbolic variables into double array. Apply 'subs' function first to substitute values for variables.
%input
x=['x values from Heuns method'];
y=['y values from Heuns method'];
n=4; %order of the polynomial you want to find
%%%LEAST SQUARE METHOD-FINDS POLYNOMIAL FOR GIVEN DATA SET%%%%%
%INPUT SECTION
x=x; %x-cordinates from data-input; independent vairiables
y=y; %y-cordinates from data-output; dependent vairiables
%CALCULATIONS SECTION
k=length(x); %NUMBER OF AVAILABLE DATA POINTS
m=n+1; %SIZE OF THE COEFFICENT MATRIX
A=zeros(m,m); %COEFFICENT MATRIX
for j=1:m
for i=1:m
A(j,i)=sum(x.^(i+j-2));
end
end
B=zeros(m,1); %FORCING FUNCTION VECTOR
for i=1:m;
B(i)=sum(y.*x.^(i-1));
end
a1=A\B %COEFFICIENTS FOR THE POLYNOMINAL--> y=a0+a1*x+a2*x^2....an*x^n CAN BE REPLACED BY GAUSSIAN ELIMINATION
%%%%%=========GAUSSIAN ELIMINATION TO FIND "a"========%%%%%%
%%%INPUT SECTION
%CALCULATION SECTION
AB=[A B]; %Augumentent matrix
R=size(AB,1); %# OF ROWS IN AB
C=size(AB,2); %# OF COLUMNS IN AB
%%%%FOWARD ELIMINATION SECTION
for J=1:R-1
[M,I]=max(abs(AB(J:R,J))); %M=MAXIMUM VALUE, I=LOCATION OF THE MAXIMUM VALUE IN THE 1ST ROW
temp=AB(J,:);
AB(J,:)=AB(I+(J-1),:);
AB(I+(J-1),:)=temp;
for i=(J+1):R;
if AB(i,J)~=0;
AB(i,:)=AB(i,:)-(AB(i,J)/AB(J,J))*AB(J,:);
end
end
end
%%%%BACKWARDS SUBSTITUTION
a(R)=AB(R,C)/AB(R,R);
for i=R-1:-1:1
a(i)=(AB(i,C)-AB(i,i+1:R)*a(i+1:R)')/AB(i,i);
end
disp(a)
%========END OF GAUSSIAN ELIMINATION=======%%%%%%%%
%STANDARD DEVIATION
Y_bar=mean(y); %ADVERAGE OF y
St=sum((y-Y_bar).^2);
SD=sqrt(St/(k-1)); %STANDARD DEVIATION
%STANDARD ERROR
for i=1:m;
T(:,i)=a(i)*x.^(i-1); %T=INDIVIDUAL POLYNOMIAL TERMS
end
for i=1:k
y_hat(i)=sum(T(i,:));
end
Sr=sum((y-y_hat).^2);
Se=sqrt(Sr/(k-(n+1))); %STANDARD ERROR-Se
%COEFFICIENT OF DETERMINATION
Cd=(St-Sr)/St %COEFFICIENT OF DETERMINATION (r^2)
fprintf('For n=%d. Coefficient of Determination=%0.5f\n',n,Cd)
%EQUATION FOR THE POLYNOMIAL
syms x y
for i=0:n
for n=1
a0=a(:,1);a1=a(:,2);a2=a(:,3);
sympref("FloatingPointOutput",true);
y=a0+a1*x+a2*x.^2
end
for n=2
a0=a(:,1);a1=a(:,2);a2=a(:,3);a3=a(:,4);
sympref("FloatingPointOutput",true);
y=a0+a1*x+a2*x.^2+a3*x.^3
end
for n=3
a0=a(:,1);a1=a(:,2);a2=a(:,2);a3=a(:,4);a4=a(:,5);
sympref("FloatingPointOutput",true);
y=a0+a1*x+a2*x.^2+a3*x.^3+a4*x.^4
end
for n=4
a0=a(:,1);a1=a(:,2);a2=a(:,3);a3=a(:,4);a4=a(:,5);a5=a(:,6);
sympref("FloatingPointOutput",true);
y=a0+a1*x+a2*x.^2+a3*x.^3+a4*x.^4+a5*x.^5
end
for n=5
a0=a(:,1);a1=a(:,2);a2=a(:,3);a3=a(:,4);a4=a(:,5);a5=a(:,6);a6=a(:,7)
sympref("FloatingPointOutput",true);
y=a0+a1*x+a2*x.^2+a3*x.^3+a4*x.^4+a5*x.^5+a6*x.^6
end
for n=6
a0=a(:,1);a1=a(:,2);a2=a(:,3);a3=a(:,4);a4=a(:,5);a5=a(:,6);a6=a(:,7);a7=a(:,8);
sympref("FloatingPointOutput",true);
y=a0+a1*x+a2*x.^2+a3*x.^3+a4*x.^4+a5*x.^5+a6*x.^6+a7*x.^7
end
for n=7
a0=a(:,1);a1=a(:,2);a2=a(:,3);a3=a(:,4);a4=a(:,5);a5=a(:,6);a6=a(:,7);a7=a(:,8);a8=a(:,9);
sympref("FloatingPointOutput",true);
y=a0+a1*x+a2*x.^2+a3*x.^3+a4*x.^4+a5*x.^5+a6*x.^6+a7*x.^7+a8*x.^8
end
for n=8
a0=a(:,1);a1=a(:,2);a2=a(:,3);a3=a(:,4);a4=a(:,5);a5=a(:,6);a6=a(:,7);a7=a(:,8);a8=a(:,9);a9=a(:,10);
sympref("FloatingPointOutput",true);
y=a0+a1*x+a2*x.^2+a3*x.^3+a4*x.^4+a5*x.^5+a6*x.^6+a7*x.^7+a8*x.^8+a9*x.^9
end
for n=9
a0=a(:,1);a1=a(:,2);a2=a(:,3);a3=a(:,4);a4=a(:,5);a5=a(:,6);a6=a(:,7);a7=a(:,8);a8=a(:,9);a9=a(:,10);a10=a(:,11);
sympref("FloatingPointOutput",true);
y=a0+a1*x+a2*x.^2+a3*x.^3+a4*x.^4+a5*x.^5+a6*x.^6+a7*x.^7+a8*x.^8+a9*x.^9+a10*x.^10
end
end
  9 Kommentare
Walter Roberson
Walter Roberson am 20 Jul. 2024
% 4 Equations representing the system working with
% MfXf"=Ksf([Xb-(L1*theta)]-Xf)+Bsf([Xb'-(L1*theta')-Xf')-(Kf*Xf);
% MrXr"=Ksr([Xb+(L2*theta)]-Xr)+Bsr([Xb'+(L2*theta')]-Xr')-(Kr*Xr) ;
% MbXb"=Ksf([Xb-(L1*theta)]-Xf)+Bsf([Xb'-(L1*theta')]-Xf')+Ksr([Xb+(L2*theta)]-Xr)+Bsr([Xb'+(L2*theta')]-Xr')+fa(t);
% Ic*theta"={-[Ksf(Xf-(L1*theta))*L1]-[Bsf(Xf'-(L1*theta'))*L1]+[Ksr(Xr+(L2*theta))*L2]+[Bsr(Xr'+(L2*theta'))*L2]+[fa(t)*L3]};
clc
clear
%-------------------------------------------------SYSTEM_PARAMETERS----------------------------------------------------------------------------------------------------------------------------------------------------------
Ic=1356; %kg-m^2
Mb=730; %kg
Mf=59; %kg
Mr=45; %kg
Kf=23000; %N/m
Ksf=18750; %N/m
Kr=16182; %N/m
Ksr=12574; %N/m
Bsf=100; %N*s/m
Bsr=100; %N*s/m
L1=1.45; %m
L2=1.39; %m
L3=0.67; %m
t=[0:20]; % time from 0 to 20 seconds
%Initial Conditions x=(0)=0 dXf/dt(0)=y(0)=0 ;
%t from 0 to 1 h=dx=0.5;
x0=0; %x at initial condition
y0=0; %y at initial condition
t0=0; %t at the start
dx=5; %delta(x) or h
h=dx;
tm=20; %what value of (x) you are ending at
syms Xf(t) Xr(t) Xb(t) theta(t) fa(t) Y
Xf_1=diff(Xf,t);
Xf_2=diff(Xf,t,2);
Xr_1=diff(Xr,t);
Xr_2=diff(Xr,t,2);
Xb_1=diff(Xb,t);
Xb_2=diff(Xb,t,2);
theta_1=diff(theta,t);
theta_2=diff(theta,t,2);
%%%% MfXf"=Ksf((Xb-(L1*theta))-Xf)+Bsf((Xb'-(L1*theta'))-Xf')-(Kf*Xf);
%anything in [] below indicates a deritive
% Mf*[(d^2Xf)/(dt^2)] = Ksf*((Xb-(L1*theta))-Xf)+Bsf*(([(dXb)/(dt)]-(L1*[(dtheta)/(dt)])-[(dXf)/(dt)])-(Kf*Xf);
Mf*Xf_2-((Ksf*((Xb-(L1*theta))-Xf)+Bsf*((Xb_1-(L1*theta_1)-Xf_1)-(Kf*Xf))))==0;
f2_YF=isolate(Mf*Xf_2-((Ksf*((Xb-(L1*theta))-Xf)+Bsf*((Xb_1-(L1*theta_1)-Xf_1)-(Kf*Xf))))==0,Xf_2);
f2_Yf=subs(f2_YF,[Xf_2 Xf_1],[Xf_1 Y])
f2_Yf = 
f2_Yf=rhs(f2_Yf)
f2_Yf = 
%dXf/dt=y_f-->ASSUMED
%dXf/dt=f1_f(x,y,t)=y_f
%dYf/dt=f2_f(x,y,t)=f2_Yf
%%%% MrXr"=Ksr((Xb+(L2*theta))-Xr)+Bsr((Xb'+(L2*theta'))-Xr')-(Kr*Xr);
%anything in [] below indicates a deritive
% Mf*[(d^2Xr)/(dt^2)] = Ksf*((Xb-(L1*theta))-Xf)+Bsr*(([(dXb)/(dt)]-(L2*[(dtheta)/(dt)])-[(dXr)/(dt)])-(Kf*Xf);
Mr*Xr_2-((Ksr*((Xb+(L2*theta))-Xr)+Bsr*((Xb_1+(L2*theta_1))-Xr_1)-(Kr*Xr)))==0;
f2_YR=isolate(Mr*Xr_2-((Ksr*((Xb+(L2*theta))-Xr)+Bsr*((Xb_1+(L2*theta_1))-Xr_1)-(Kr*Xr)))==0,Xr_2);
f2_Yr=subs(f2_YR,[Xr_2 Xr_1],[Xr_1 Y])
f2_Yr = 
f2_Yr=rhs(f2_Yr)
f2_Yr = 
%dXr/dt=y_r-->ASSUMED
%dXr/dt=f1_r(x,y,t)=y_r
%dYr/dt=f2_r(x,y,t)=f2_Yr
%%%% MbXb"=Ksf([Xb-(L1*theta)]-Xf)+Bsf([Xb'-(L1*theta')]-Xf')+Ksr([Xb+(L2*theta)]-Xr)+Bsr([Xb'+(L2*theta')]-Xr')+fa(t);
%anything in [] below indicates a deritive fa(t) given as 10e^(-(5t))
% Mb*[(d^2Xb)/(dt^2)]=Ksf*((Xb-(L1*theta))-Xf)+Bsf*(([(dXb)/(dt)]-(L1*[(dtheta)/(dt)]))-[(dXf)/(dt)])+Ksr*([Xb+(L2*theta)]-Xr)+Bsr( (([(dXb)/(dt)]+(L2*[(dtheta)/(dt)]))-[(dXr)/(dt)]))+fa(t);
Mb*Xb_2-((Ksf*((Xb-(L1*theta))-Xf)+Bsf*((Xb_1-(L1*theta_1))-Xf_1)+Ksr*((Xb+(L2*theta))-Xr)+Bsr*((Xb_1+(L2*theta_1))-Xr_1))==(10*exp(-(5*t))));
f2_YB=Xb_2==(-Ksf*((Xb-(L1*theta))-Xf)-Bsf*((Xb_1-(L1*theta_1))-Xf_1)-Ksr*((Xb+(L2*theta))-Xr)-Bsr*((Xb_1+(L2*theta_1))-Xr_1)+(10*exp(-(5*t))))/Mb;
f2_Yb=subs(f2_YB,[Xb_2 Xb_1],[Xb_1 Y])
f2_Yb(t) = 
f2_Yb=rhs(f2_Yb)
f2_Yb(t) = 
%dXb/dt=y-->ASSUMED
%dXb/dt=f1_b(x,y,t)=y_b
%dYb/dt=f2_b(x,y,t)=f2_Yb
%%%% Ic*theta"={-(Ksf*(Xf-(L1*theta))*L1)-(Bsf*(Xf'-(L1*theta'))*L1)+(Ksr*(Xr+(L2*theta))*L2)+(Bsr*(Xr'+(L2*theta'))*L2)+(fa(t)*L3)};
%anything in [] below indicates a deritive fa(t) given as 10e^(-(5t))
%Ic*[(d^2theta)/(dt^2)]=(-(Ksf*(Xf-(L1*theta))*L1)-(Bsf*([dXf/dt]-(L1*[(dtheta)/(dt)]))*L1)+(Ksr*(Xr+(L2*theta))*L2)+(Bsr*([(dXr)/(dt)]+(L2*[(dtheta)/(dt)]))*L2)+(fa(t)*L3));
theta_2==((-(Ksf*(Xf-(L1*theta))*L1)-(Bsf*(Xf_1-(L1*theta_1))*L1)+(Ksr*(Xr+(L2*theta))*L2)+(Bsr*(Xr_1+(L2*theta_1))*L2)+((10*exp(-(5*t)))*L3)))/Ic;
Ic*theta_2-(-(Ksf*(Xf-(L1*theta))*L1)-(Bsf*(Xf_1-(L1*theta_1))*L1)+(Ksr*(Xr+(L2*theta))*L2)+(Bsr*(Xr_1+(L2*theta_1))*L2))==(10*exp(-(5*t)))*L3;
f2_YTheta=theta_2==((-Ksf*(Xf-(Xb-(L1*theta)))*L1) - (Bsf*(Xf_1-(Xb_1-(L1*theta_1)))*L1) + (Ksr*(Xr-(Xb+(L2*theta)))*L2) + (Bsr*(Xr_1-(Xb_1+(L2*theta_1)))*L2) + ((10*exp(-(5*t)))*L3))/Ic;
f2_Ytheta=subs(f2_YTheta,[theta_2 theta_1],[theta_1 Y])
f2_Ytheta(t) = 
f2_Ytheta=rhs(f2_Ytheta)
f2_Ytheta(t) = 
%dXb/dt=y-->ASSUMED
%dXb/dt=f1_theta(x,y,t)=y_theta
%dYb/dt=f2_theta(x,y,t)=f2_Ytheta
syms x y_f y_r y_b y_theta t
%==INPUT SECTION==%
fx_f=@(x,y,t)y_f;
fy_f=@(x,y,t)f2_Yf;
fx_r=@(x,y,t)y_r;
fy_r=@(x,y,t)f2_Yr;
fx_b=@(x,y,t)y_b;
fy_b=@(x,y,t)f2_Yb;
fx_theta=@(x,y,t)y_theta;
fy_theta=@(x,y,t)f2_Ytheta;
%==CALCULATIONS SECTION==%
tn=t0:h:tm;
xn_f(1) = sym(x0);
yn_f = sym(y0);
xn_r(1) = sym(x0);
yn_r = sym(y0);
xn_b(1) = sym(x0);
yn_b = sym(y0);
xn_theta(1) = sym(x0);
yn_theta = sym(y0);
for i=1:length(tn)
%==EULER'S METHOD
xn_f(i+1)=xn_f(i)+fx_f(xn_f(i),yn_f(i),tn(i))*h;
yn_f(i+1)=yn_f(i)+fy_f(xn_f(i),yn_f(i),tn(i))*h;
xn_r(i+1)=xn_r(i)+fx_r(xn_r(i),yn_r(i),tn(i))*h;
yn_r(i+1)=yn_r(i)+fy_r(xn_r(i),yn_r(i),tn(i))*h;
xn_b(i+1)=xn_b(i)+fx_b(xn_b(i),yn_b(i),tn(i))*h;
yn_b(i+1)=yn_b(i)+fy_b(xn_b(i),yn_b(i),tn(i))*h;
xn_theta(i+1)=xn_theta(i)+fx_theta(xn_theta(i),yn_theta(i),tn(i))*h;
yn_theta(i+1)=yn_theta(i)+fy_theta(xn_theta(i),yn_theta(i),tn(i))*h;
%==NEXT 3 LINES ARE FOR HEUN'S METHOD
tn(i+1)=tn(i)+h;
xn_f(i+1)=xn_f(i)+0.5*(fx_f(xn_f(i),yn_f(i),tn(i))+fx_f(xn_f(i+1),yn_f(i+1),tn(i+1)))*h;
yn_f(i+1)=yn_f(i)+0.5*(fy_f(xn_f(i),yn_f(i),tn(i))+fy_f(xn_f(i+1),yn_f(i+1),tn(i+1)))*h;
xn_r(i+1)=xn_r(i)+0.5*(fx_r(xn_r(i),yn_r(i),tn(i))+fx_r(xn_r(i+1),yn_r(i+1),tn(i+1)))*h;
yn_r(i+1)=yn_r(i)+0.5*(fy_r(xn_r(i),yn_r(i),tn(i))+fy_r(xn_r(i+1),yn_r(i+1),tn(i+1)))*h;
xn_b(i+1)=xn_b(i)+0.5*(fx_b(xn_b(i),yn_b(i),tn(i))+fx_b(xn_b(i+1),yn_b(i+1),tn(i+1)))*h;
yn_b(i+1)=yn_b(i)+0.5*(fy_b(xn_b(i),yn_b(i),tn(i))+fy_b(xn_b(i+1),yn_b(i+1),tn(i+1)))*h;
xn_theta(i+1)=xn_theta(i)+0.5*(fx_theta(xn_theta(i),yn_theta(i),tn(i))+fx_theta(xn_theta(i+1),yn_theta(i+1),tn(i+1)))*h;
yn_theta(i+1)=yn_theta(i)+0.5*(fy_theta(xn_theta(i),yn_theta(i),tn(i))+fy_theta(xn_theta(i+1),yn_theta(i+1),tn(i+1)))*h;
fprintf('t=%s\t x_f=%s\t y_f=%s\t x_r=%s\t y_r=%s\t x_b=%s\t y_b=%s\t x_theta=%s\t y_theta=%s\n',string(tn(i)),string(xn_f(i)),string(yn_f(i)),string(xn_r(i)),string(yn_r(i)),string(xn_b(i)),string(yn_b(i)),string(xn_theta(i)),string(yn_theta(i)))
end
t=0 x_f=0 y_f=0 x_r=0 y_r=0 x_b=0 y_b=0 x_theta=0 y_theta=0 t=5 x_f=5*y_f y_f=(93750*Xb(t))/59 - (500*Y)/59 - (11593750*Xf(t))/59 - (271875*theta(t))/118 + (500*diff(Xb(t), t))/59 - (725*diff(theta(t), t))/59 x_r=5*y_r y_r=(12574*Xb(t))/9 - (100*Y)/9 - (28756*Xr(t))/9 + (873893*theta(t))/450 + (100*diff(Xb(t), t))/9 + (139*diff(theta(t), t))/9 x_b=5*y_b y_b=(5*exp(-5*t))/73 - (100*Y)/73 - (15662*Xb(t))/73 + (9375*Xf(t))/73 + (6287*Xr(t))/73 + (242741*theta(t))/3650 + (50*diff(Xf(t), t))/73 + (50*diff(Xr(t), t))/73 + (3*diff(theta(t), t))/73 x_theta=5*y_theta y_theta=(67*exp(-5*t))/2712 - (20173*Y)/13560 + (242741*Xb(t))/6780 - (90625*Xf(t))/904 + (873893*Xr(t))/13560 - (159290251*theta(t))/678000 + (5*diff(Xb(t), t))/226 - (725*diff(Xf(t), t))/1356 + (695*diff(Xr(t), t))/1356 t=10 x_f=10*y_f y_f=(187500*Xb(t))/59 - (1000*Y)/59 - (23187500*Xf(t))/59 - (271875*theta(t))/59 + (1000*diff(Xb(t), t))/59 - (1450*diff(theta(t), t))/59 x_r=10*y_r y_r=(25148*Xb(t))/9 - (200*Y)/9 - (57512*Xr(t))/9 + (873893*theta(t))/225 + (200*diff(Xb(t), t))/9 + (278*diff(theta(t), t))/9 x_b=10*y_b y_b=(10*exp(-5*t))/73 - (200*Y)/73 - (31324*Xb(t))/73 + (18750*Xf(t))/73 + (12574*Xr(t))/73 + (242741*theta(t))/1825 + (100*diff(Xf(t), t))/73 + (100*diff(Xr(t), t))/73 + (6*diff(theta(t), t))/73 x_theta=10*y_theta y_theta=(67*exp(-5*t))/1356 - (20173*Y)/6780 + (242741*Xb(t))/3390 - (90625*Xf(t))/452 + (873893*Xr(t))/6780 - (159290251*theta(t))/339000 + (5*diff(Xb(t), t))/113 - (725*diff(Xf(t), t))/678 + (695*diff(Xr(t), t))/678 t=15 x_f=15*y_f y_f=(281250*Xb(t))/59 - (1500*Y)/59 - (34781250*Xf(t))/59 - (815625*theta(t))/118 + (1500*diff(Xb(t), t))/59 - (2175*diff(theta(t), t))/59 x_r=15*y_r y_r=(12574*Xb(t))/3 - (100*Y)/3 - (28756*Xr(t))/3 + (873893*theta(t))/150 + (100*diff(Xb(t), t))/3 + (139*diff(theta(t), t))/3 x_b=15*y_b y_b=(15*exp(-5*t))/73 - (300*Y)/73 - (46986*Xb(t))/73 + (28125*Xf(t))/73 + (18861*Xr(t))/73 + (728223*theta(t))/3650 + (150*diff(Xf(t), t))/73 + (150*diff(Xr(t), t))/73 + (9*diff(theta(t), t))/73 x_theta=15*y_theta y_theta=(67*exp(-5*t))/904 - (20173*Y)/4520 + (242741*Xb(t))/2260 - (271875*Xf(t))/904 + (873893*Xr(t))/4520 - (159290251*theta(t))/226000 + (15*diff(Xb(t), t))/226 - (725*diff(Xf(t), t))/452 + (695*diff(Xr(t), t))/452 t=20 x_f=20*y_f y_f=(375000*Xb(t))/59 - (2000*Y)/59 - (46375000*Xf(t))/59 - (543750*theta(t))/59 + (2000*diff(Xb(t), t))/59 - (2900*diff(theta(t), t))/59 x_r=20*y_r y_r=(50296*Xb(t))/9 - (400*Y)/9 - (115024*Xr(t))/9 + (1747786*theta(t))/225 + (400*diff(Xb(t), t))/9 + (556*diff(theta(t), t))/9 x_b=20*y_b y_b=(20*exp(-5*t))/73 - (400*Y)/73 - (62648*Xb(t))/73 + (37500*Xf(t))/73 + (25148*Xr(t))/73 + (485482*theta(t))/1825 + (200*diff(Xf(t), t))/73 + (200*diff(Xr(t), t))/73 + (12*diff(theta(t), t))/73 x_theta=20*y_theta y_theta=(67*exp(-5*t))/678 - (20173*Y)/3390 + (242741*Xb(t))/1695 - (90625*Xf(t))/226 + (873893*Xr(t))/3390 - (159290251*theta(t))/169500 + (10*diff(Xb(t), t))/113 - (725*diff(Xf(t), t))/339 + (695*diff(Xr(t), t))/339
%input
x=['x values from Heuns method'];
y=['y values from Heuns method'];
n=4; %order of the polynomial you want to find
%%%LEAST SQUARE METHOD-FINDS POLYNOMIAL FOR GIVEN DATA SET%%%%%
%INPUT SECTION
x=x; %x-cordinates from data-input; independent vairiables
y=y; %y-cordinates from data-output; dependent vairiables
%CALCULATIONS SECTION
k=length(x); %NUMBER OF AVAILABLE DATA POINTS
m=n+1; %SIZE OF THE COEFFICENT MATRIX
A=zeros(m,m); %COEFFICENT MATRIX
for j=1:m
for i=1:m
A(j,i)=sum(x.^(i+j-2));
end
end
B=zeros(m,1); %FORCING FUNCTION VECTOR
for i=1:m;
B(i)=sum(y.*x.^(i-1));
end
a1=A\B %COEFFICIENTS FOR THE POLYNOMINAL--> y=a0+a1*x+a2*x^2....an*x^n CAN BE REPLACED BY GAUSSIAN ELIMINATION
Warning: Matrix is close to singular or badly scaled. Results may be inaccurate. RCOND = 5.426140e-22.
a1 = 5x1
27.3117 -0.7398 0.0371 -0.0003 0.0000
<mw-icon class=""></mw-icon>
<mw-icon class=""></mw-icon>
%%%%%=========GAUSSIAN ELIMINATION TO FIND "a"========%%%%%%
%%%INPUT SECTION
%CALCULATION SECTION
AB=[A B]; %Augumentent matrix
R=size(AB,1); %# OF ROWS IN AB
C=size(AB,2); %# OF COLUMNS IN AB
%%%%FOWARD ELIMINATION SECTION
for J=1:R-1
[M,I]=max(abs(AB(J:R,J))); %M=MAXIMUM VALUE, I=LOCATION OF THE MAXIMUM VALUE IN THE 1ST ROW
temp=AB(J,:);
AB(J,:)=AB(I+(J-1),:);
AB(I+(J-1),:)=temp;
for i=(J+1):R;
if AB(i,J)~=0;
AB(i,:)=AB(i,:)-(AB(i,J)/AB(J,J))*AB(J,:);
end
end
end
%%%%BACKWARDS SUBSTITUTION
a(R)=AB(R,C)/AB(R,R);
for i=R-1:-1:1
a(i)=(AB(i,C)-AB(i,i+1:R)*a(i+1:R)')/AB(i,i);
end
disp(a)
27.3117 -0.7398 0.0371 -0.0003 0.0000
%========END OF GAUSSIAN ELIMINATION=======%%%%%%%%
%STANDARD DEVIATION
Y_bar=mean(y); %ADVERAGE OF y
St=sum((y-Y_bar).^2);
SD=sqrt(St/(k-1)); %STANDARD DEVIATION
%STANDARD ERROR
for i=1:m;
T(:,i)=a(i)*x.^(i-1); %T=INDIVIDUAL POLYNOMIAL TERMS
end
for i=1:k
y_hat(i)=sum(T(i,:));
end
Sr=sum((y-y_hat).^2);
Se=sqrt(Sr/(k-(n+1))); %STANDARD ERROR-Se
%COEFFICIENT OF DETERMINATION
Cd=(St-Sr)/St %COEFFICIENT OF DETERMINATION (r^2)
Cd = 1.0000
fprintf('For n=%d. Coefficient of Determination=%0.5f\n',n,Cd)
For n=4. Coefficient of Determination=0.99998
%EQUATION FOR THE POLYNOMIAL
syms x y
%for n=2 activate lines below
%a0=a(:,1);a1=a(:,1);a2=a(:,3);
%sympref("FloatingPointOutput",true);
%y=a0+a1*x+a2*x.^2
%for n=3 activate lines below
%a0=a(:,1);a1=a(:,1);a2=a(:,3);a3=a(:,4);
%sympref("FloatingPointOutput",true);
%y=a0+a1*x+a2*x.^2+a3*x.^3
%for n=4 activate lines below
a0=a(:,1);a1=a(:,1);a2=a(:,3);a3=a(:,4);a4=a(:,5);
sympref("FloatingPointOutput",true);
y=a0+a1*x+a2*x.^2+a3*x.^3+a4*x.^4
y = 
%for n=5 activate lines below
%a0=a(:,1);a1=a(:,1);a2=a(:,3);a3=a(:,4);a4=a(:,5);a5=a(:,6);
%sympref("FloatingPointOutput",true);
%y=a0+a1*x+a2*x.^2+a3*x.^3+a4*x.^4+a5*x.^5
%for n=6 activate lines below
%a0=a(:,1);a1=a(:,1);a2=a(:,3);a3=a(:,4);a4=a(:,5);a5=a(:,6);a6=a(:,7)
%sympref("FloatingPointOutput",true);
%y=a0+a1*x+a2*x.^2+a3*x.^3+a4*x.^4+a5*x.^5+a6*x.^6
%for n=7 activate lines below
%a0=a(:,1);a1=a(:,1);a2=a(:,3);a3=a(:,4);a4=a(:,5);a5=a(:,6);a6=a(:,7);a7=a(:,8);
%sympref("FloatingPointOutput",true);
%y=a0+a1*x+a2*x.^2+a3*x.^3+a4*x.^4+a5*x.^5+a6*x.^6+a7*x.^7
%for n=8 activate lines below
%a0=a(:,1);a1=a(:,1);a2=a(:,3);a3=a(:,4);a4=a(:,5);a5=a(:,6);a6=a(:,7);a7=a(:,8);a8=a(:,9);
%sympref("FloatingPointOutput",true);
%y=a0+a1*x+a2*x.^2+a3*x.^3+a4*x.^4+a5*x.^5+a6*x.^6+a7*x.^7+a8*x.^8
%for n=9 activate lines below
%a0=a(:,1);a1=a(:,1);a2=a(:,3);a3=a(:,4);a4=a(:,5);a5=a(:,6);a6=a(:,7);a7=a(:,8);a8=a(:,9);a9=a(:,10);
%sympref("FloatingPointOutput",true);
%y=a0+a1*x+a2*x.^2+a3*x.^3+a4*x.^4+a5*x.^5+a6*x.^6+a7*x.^7+a8*x.^8+a9*x.^9

Melden Sie sich an, um zu kommentieren.

Antworten (0)

Produkte


Version

R2024a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by