Solving non linear delay differential equations with dde23
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Jacobo Levy Abitbol
am 23 Apr. 2015
Kommentiert: Torsten
am 23 Apr. 2015
i'm working on a delay differential equation that looks like this: f(y,z,y',z')(t)=a(y,z)(t)+b(y,z)(t-tau) g(y,z,y',z')(t)=c(y,z)(t)+d(y,z)(t-tau) The problem is, in MATLAB, dde23 only solves DDE when the differential terms are isolated (y'=F(t,y,ydel,z,zdel) , z'=G(t,y,ydel,z,zdel)).
Do you know if there's a way to work around it (or perhaps another available tool)? I've tried ddnsd assuming a null delay for delayed differential term but it only accepts non zero delays). Also trying to isolate y' and z' has revealed useless. Thank you
0 Kommentare
Akzeptierte Antwort
Torsten
am 23 Apr. 2015
Just solve the system
f(y,z,y',z')(t)=a(y,z)(t)+b(y,z)(t-tau) g(y,z,y',z')(t)=c(y,z)(t)+d(y,z)(t-tau)
for y',z' (two nonlinear equations in the unknowns y' and z').
A possible tool is MATLAB's fsolve.
Best wishes
Torsten.
2 Kommentare
Torsten
am 23 Apr. 2015
If
f(y,z,y',z')= y'^2+sin(z')
g(y,z,y',z')=log(y')+atan(z')
e.g., fsolve will numerically solve the system
y'^2+sin(z')=a(y,z)(t)+b(y,z)(t-tau)
log(y')+atan(z')=c(y,z)(t)+d(y,z)(t-tau)
for y',z' if you declare y' and z' as the unknowns (all other variables are given).
And this s exactly what is needed for dde23 to work.
Best wishes
Torsten.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Delay Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!