warning all the time, don't know what is wrong
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
syms m n p a x y z lambda real
g = x + y + z -a;
L = (x).^m.*(y).^n.*(z).^p - lambda.*g
Lx = diff(L,x)
Ly = diff(L,y)
Lz = diff(L,z)
sol = solve([Lx==0,Ly==0,Lz==0,g==0],[x y z lambda])
sol.x
sol.y
sol.z
Antworten (1)
Walter Roberson
am 22 Mär. 2024
Verschoben: Walter Roberson
am 22 Mär. 2024
The 0^n and 0^(m-1) occur because there are not constraints on m and n, so there is the possibility that 0^0 is being generated, and 0^0 is 1 whereas 0^anything_else is 0
syms m n p a x y z lambda real
g = x + y + z -a;
L = (x).^m.*(y).^n.*(z).^p - lambda.*g;
Lx = diff(L,x);
Ly = diff(L,y);
Lz = diff(L,z);
eqns = [Lx==0,Ly==0,Lz==0,g==0];
partial_lambda = solve(eqns(1), lambda, 'returnconditions', true);
%partial_lambda.conditions
eqns2 = subs(eqns(2:end), lambda, partial_lambda.lambda);
partial_x = solve(eqns2(3), x);
eqns3 = subs(eqns2([1:2 4:end]), x, partial_x);
partial_y = solve(eqns3(1), y, 'returnconditions', true);
%partial_y.y
%partial_y.conditions
eqns4 = subs(eqns3(2:end), y, partial_y.y);
syms parameter1 parameter2 real
partial_z1 = subs(solve(eqns4(1,1), z, 'returnconditions', true), sym('x'), parameter1);
partial_z2 = subs(solve(eqns4(2,1), z, 'returnconditions', true), sym('x'), parameter2);
partial_z3 = solve(eqns4(3,1), z, 'returnconditions', true);
%partial_z3.z
%partial_z3.conditions
back_z1 = partial_z1.z;
back_y1 = subs(partial_y.y(1), z, back_z1);
back_x1 = subs(partial_x, {y, z}, {back_y1, back_z1});
back_lambda1 = subs(partial_lambda, {x, y, z}, {back_x1, back_y1, back_z1});
solution1 = [x == back_x1, y == back_y1, z == back_z1, lambda == back_lambda1.lambda]
back_z2 = partial_z2.z;
back_y2 = subs(partial_y.y(2), z, back_z2);
back_x2 = subs(partial_x, {y, z}, {back_y2, back_z2});
back_lambda2 = subs(partial_lambda, {x, y, z}, {back_x2, back_y2, back_z2});
solution2 = [x == back_x2, y == back_y2, z == back_z2, lambda == back_lambda2.lambda]
back_z3a = partial_z3.z(1);
back_y3a = subs(partial_y.y(3), z, back_z3a);
back_x3a = subs(partial_x, {y, z}, {back_y3a, back_z3a});
back_lambda3a = subs(partial_lambda, {x, y, z}, {back_x3a, back_y3a, back_z3a});
solution3a = [x == back_x3a, y == back_y3a, z == back_z3a, lambda == back_lambda3a.lambda]
back_z3b = partial_z3.z(2);
back_y3b = subs(partial_y.y(3), z, back_z3b);
back_x3b = subs(partial_x, {y, z}, {back_y3b, back_z3b});
back_lambda3b = subs(partial_lambda, {x, y, z}, {back_x3b, back_y3b, back_z3b});
solution3b = [x == back_x3b, y == back_y3b, z == back_z3b, lambda == back_lambda3b.lambda]
back_z3c = partial_z3.z(3);
back_y3c = subs(partial_y.y(3), z, back_z3c);
back_x3c = subs(partial_x, {y, z}, {back_y3c, back_z3c});
back_lambda3c = subs(partial_lambda, {x, y, z}, {back_x3c, back_y3c, back_z3c});
solution3c = [x == back_x3c, y == back_y3c, z == back_z3c, lambda == back_lambda3c.lambda]
5 Kommentare
Dyuman Joshi
am 29 Mär. 2024
Accepting the answer indicates that your problem has been solved (which can be helpful to other people in future) and it awards the volunteer with reputation points for helping you.
You can accept only 1 answer for a question, but you can vote for as many answers as you want. Voting an answer also provides reputation points.
Siehe auch
Kategorien
Mehr zu Equation Solving finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!