How to add two different surface curves in a single plot?
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Deepshikha Deo
am 15 Mär. 2024
Kommentiert: Star Strider
am 20 Mär. 2024
I have a bell shaped curve in 3D (generated from curve fitter app) as shown in the figures.
Both are the same curve the only difference is one is without point data and the other has point data.
Problem: I want to add another surface to the same plot for the same data which is at z=1 and parallel to x- and y-axis. Also, is it possible to find the values of major and minor axes of the ellipse formed from the intersection of both the surfaces. Or in other words, the values between the intersection of x and z values of both the curves and the y and z values of both the curves.
I hope I am able to express myself clearly.
Thank you
0 Kommentare
Akzeptierte Antwort
Star Strider
am 15 Mär. 2024
Try this —
‘I want to add another surface to the same plot for the same data which is at z=1 and parallel to x- and y-axis.’
[X,Y] = ndgrid(-3:0.1:3);
f = @(x,y) exp(-(x.^2+(2*y).^2)*0.5);
Z = f(X,Y)*3;
figure
surf(X, Y, Z)
hold on
surf(X, Y, ones(size(Z)), 'FaceColor','r', 'FaceAlpha',0.5, 'EdgeColor','none')
hold off
colormap(turbo)
‘Also, is it possible to find the values of major and minor axes of the ellipse formed from the intersection of both the surfaces.’
figure
[c,h] = contour(X, Y, Z, [1 1]);
axis('equal')
grid
Ax = gca;
Ax.XAxisLocation = 'origin';
Ax.YAxisLocation = 'origin';
elpsfcn = @(b,xy) xy(1,:).^2/b(1)^2 + xy(2,:).^2/b(2)^2 - b(3);
opts = optimoptions('fminunc', 'MaxFunctionEvaluations', 5E+3, 'MaxIterations',1E+4);
[B, fv] = fminunc(@(b) norm(elpsfcn(b,c(:,2:end))), rand(3,1), opts)
fprintf('Semimajor Axis = %.4f\nSemiminor Axis = %.4f\nConstant = %.4f\n', B)
text(-2.5, 2.5, sprintf('$\\frac{x^2}{%.2f^2} + \\frac{y^2}{%.2f^2} = %.4f$',B), 'Interpreter','latex', 'FontSize',16)
.
8 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Linear and Nonlinear Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!