How to debug this? Not getting into it. Need help

1 Ansicht (letzte 30 Tage)
tuhin
tuhin am 4 Mär. 2024
Kommentiert: tuhin am 4 Mär. 2024
% Data
rData = [5.3571429, 0.096854535; 10.714286, 0.055104186; 16.071429, 0.042811499; 21.428571, 0.024825886; 26.785714, 0.023279183; 32.142857, 0.016328542; 37.5, 0.0092185037; 42.857143, 0.0075624777; 48.214286, 0.0023514323; 53.571429, 0.001637045; 58.928571, -0.0024887011; 64.285714, -0.0034741333; 69.642857, -0.0056340032; 75, -0.0040906991; 80.357143, -0.0039738424; 85.714286, -0.0044593789; 91.071429, -0.0054884315; 96.428571, -0.0037277341; 101.78571, -0.0041691748; 107.14286, -0.0039292558; 112.5, -0.0037408923; 117.85714, -0.0040700255; 123.21429, -0.0028904555; 128.57143, -0.0022557232; 133.92857, -0.0020756487; 139.28571, -0.0020739949; 144.64286, -0.0015149035; 150, -0.0019796368; 155.35714, -0.00068430865; 160.71429, -0.00060721168; 166.07143, -0.00055972397; 171.42857, -0.0011788755; 176.78571, -0.00090675531; 182.14286, -0.00060012026; 187.5, 7.6071311e-6];
tData = [5.3571429, 0.081473653; 10.714286, -0.0076210718; 16.071429, -0.038565046; 21.428571, -0.014000405; 26.785714, -0.042161254; 32.142857, -0.071404281; 37.5, -0.066992712; 42.857143, -0.031355057; 48.214286, -0.02043848; 53.571429, -0.025259291; 58.928571, -0.019615094; 64.285714, -0.015185751; 69.642857, -0.012213914; 75, -0.0047624032; 80.357143, -0.00041652762; 85.714286, 0.0028162852; 91.071429, 0.00979253; 96.428571, 0.0080315783; 101.78571, 0.0034739882; 107.14286, 0.0021786814; 112.5, 0.0043349925; 117.85714, 0.0053397331; 123.21429, 0.0061087654; 128.57143, 0.0028425693; 133.92857, 0.002129577; 139.28571, 0.0068534431; 144.64286, 0.0071201038; 150, 0.0099290536; 155.35714, 0.0089545127; 160.71429, 0.0079282308; 166.07143, 0.0075533041; 171.42857, 0.01092774; 176.78571, 0.012219652; 182.14286, 0.01013098; 187.5, 0.0096622622];
% Define equations
Alpha = @(mu, lambda) 1/(2*mu + lambda);
% Define equations
eqns = @(x, y, mu, lambda, ke, ko) [y(2); -y(1) + Alpha(mu, lambda)^-1 * ke^2 * x.^2 .* y(1) - Alpha(mu, lambda)^-1 * ko^2 * x.^2 .* y(2)];
% Define the model
funr = @(params, x) deval(ode45(@(x, y) eqns(x, y, params(1), params(2), params(3), params(4)), [0.75, 187.5], [0.1625, 0]), x, 1);
% Fit the data with initial guess values
initialGuess = [15, 50, 0.01, 0.01];
fit = lsqcurvefit(@(params, x) funr(params, x), initialGuess, rData(:,1), rData(:,2));
Error using lsqcurvefit
Function value and YDATA sizes are not equal.
fit2 = lsqcurvefit(@(params, x) funr(params, x), initialGuess, tData(:,1), tData(:,2));
% Plot the fitted functions
x_values = linspace(1, 187.5, 1000);
r_fit = funr(fit, x_values);
theta_fit = funr(fit2, x_values);
figure;
plot(x_values, r_fit, 'r', 'LineWidth', 2);
hold on;
scatter(rData(:,1), rData(:,2), 'b');
xlabel('x');
ylabel('r(x)');
title('Fitted r(x)');
legend('Fitted r(x)', 'rData');
figure;
plot(x_values, theta_fit, 'r', 'LineWidth', 2);
hold on;
scatter(tData(:,1), tData(:,2), 'b');
xlabel('x');
ylabel('\theta(x)');
title('Fitted \theta(x)');
legend('Fitted \theta(x)', 'tData');
~
Getting the following Errors: using lsqcurvefit Function value and YDATA sizes are not equal. Error in test (line 16) fit = lsqcurvefit(@(params, x) deval(funr(params(1), params(2), params(3), params(4), x), x, 1), initialGuess, rData(:,1), rData(:,2));

Antworten (1)

Torsten
Torsten am 4 Mär. 2024
Use
fit = lsqcurvefit(@(params, x) funr(params, x), initialGuess, rData(:,1).', rData(:,2).');
fit2 = lsqcurvefit(@(params, x) funr(params, x), initialGuess, tData(:,1).', tData(:,2).');
instead of
fit = lsqcurvefit(@(params, x) funr(params, x), initialGuess, rData(:,1), rData(:,2));
fit2 = lsqcurvefit(@(params, x) funr(params, x), initialGuess, tData(:,1), tData(:,2));
  3 Kommentare
Torsten
Torsten am 4 Mär. 2024
Your initial code works with the changes I suggested. Why do you present a new problem now ?
tuhin
tuhin am 4 Mär. 2024
There were something wrong in the eqns. That I corrected now. The actual form of two coupled differential eqns are:
(*Define the equations*)
\[Alpha][\[Mu]_, \[Lambda]_] := 1/(2*\[Mu] + \[Lambda]);
eqns[\[Mu]_, \[Lambda]_, ke_, ko_] := {
x^2*r''[x] + x*r'[x] - r[x] + \[Alpha][\[Mu], \[Lambda]]^-1*ke^2*x^2*r[x] - \[Alpha][\[Mu], \[Lambda]]^-1*ko^2*x^2*\[Theta][x] == 0,
x^2*\[Theta]''[x] + x*\[Theta]'[x] - \[Theta][x] + \[Mu]^-1*ko^2*x^2*r[x] + \[Mu]^-1*ke^2*x^2*\[Theta][x] == 0};
I want to use and solve this two coupled differential eqns (with four boundary conditions) and fit it with the experimental data of r(x) vs x and \theta(x) vs x. For this I want to tune those four parameters mu; lambda; ke; ko. Please let me know if you need more clarifications. I want to get an estimate of these parameters.

Melden Sie sich an, um zu kommentieren.

Produkte


Version

R2022b

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by