Solution of a second order differential equation
5 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I am unable to solve a differential equation using dsove command in Matlab. I get the Warning: Unable to find symbolic solution. Can you please help me with it.
clc
clear
close
syms y(x)
L=1;
A=1;
p=x^2;
s=10*diff(y,x)+100000*(diff(y,x))^3;
DE = diff(s*A,x,1)+p;
cond = [y(0.0)==0.0, y(L)==1.0];
sol = dsolve(DE==0.0,cond)
Also I tried using bvp4c to solve it but was still unsuccessful. I have enclosed the code below. Thanks a lot for your help
!
clc
clear
close
L=1;
A=1;
% Using bvp4c
x=linspace(0,L,12);
yi=bvpinit(x,[1,1])
sol=bvp4c(@bvpfcn,@bcfcn,yi)
function dydx = bvpfcn(x,y,A)
dydx = zeros(2,1);
dydx = [y(2)
-x^2/(10*A+300000*(y(2))^2)];
end
function res = bcfcn(ya,yb)
res = [ya(1)-0.0
yb(1)-1.0];
end
0 Kommentare
Antworten (1)
Sam Chak
am 31 Jan. 2024
Hi @Swami
I've got a solution from the bvp4c() solver.
syms y(x)
L = 1;
A = 1;
p = x^2;
s = 10*diff(y,x) + 100000*(diff(y,x))^3
DE = diff(s*A,x,1) + p == 0;
[V, S] = odeToVectorField(DE)
clear
L = 1;
%% Using bvp4c
x = linspace(0, L, 21);
yi = bvpinit(x, [1, 1]);
sol = bvp4c(@bvpfcn, @bcfcn, yi);
x = sol.x;
y = sol.y;
%% Plot results
plot(x, y, '-o', 'linewidth', 1), grid
xlabel('x', 'fontsize', 14)
ylabel('y', 'fontweight', 'bold', 'fontsize', 14)
legend('y_{1}', 'y_{2}', 'location', 'southeast')
%% Differential equations
function dydx = bvpfcn(x,y)
A = 1;
dydx = [y(2);
- (x^2)/(300000*y(2)^2 + 10*A)];
end
%% Boundary condition
function res = bcfcn(ya,yb)
res = [ya(1) - 0;
yb(1) - 1];
end
2 Kommentare
Sam Chak
am 31 Jan. 2024
Hi @Swami
I'm glad it works. What I did, I moved 'A = 1' to the bvpfcn() function so that I don't need to call unnecessary extra parameters. I like to place constants inside the function unless I want to test out some parameters. Generally, your bvp4c code works if you make a change to this line using this syntax to call 'A'.
sol = bvp4c(@(x, y) bvpfcn(x, y, A), @bcfcn, yi)
If you find the solution helpful, please consider clicking 'Accept' ✔ on the answer and voting 👍 for it. Thanks a bunch!
Siehe auch
Kategorien
Mehr zu Boundary Value Problems finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!