Singular Jacobian matrix in steady state problem - PDE toolbox - Error using pde.intern​al.FESolve​rUtilities​/solveStat​ionaryNonl​inear Nonlinear solution failed due to singular

5 Ansichten (letzte 30 Tage)
I am trying to solve a heat conduction based steady state problem, however every time I run it, I get the following error, no matter what uniform initial condition I give:
Error using pde.internal.FESolverUtilities/solveStationaryNonlinear
Nonlinear solution failed due to singular Jacobian matrix.
To be honest, my code is more complex than that. I have to spatial domains coupled together. One is solved using a transient solver and the other is solve using a steady state solver. They are coupled by continuity of the heat flux via a function that I created for each time step. The idea is to make calculations faster considering part of the geometry at steady state for each time step of the other part of the geometry.
At a ceratin time, the residual in the steady state region becomes higher than the residual tolerance set by PDE toolbox (1e-4), therefore the steady state solver should start iterating trying to bring it down and converge, but it does not happen, since it crashes.
Here's my code. Geometry and material properties are contained in specific functions:
clear all
clc
close all
% Useful: https://it.mathworks.com/help/pde/ug/pdemodeler-app.html
% ---- Load universal physical constants ---- %
BoltzmannConstant = 1.380649*1e-23; % [J/K]
R = 8.314; % [J/mol*K]
Avog = 6.02214076*1e23; % [atoms/mol]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% -------- Start of User input -------- %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% ---- Simulation time setting ---- %
tlist = 0:0.2:60*17.3; %0:.5:60*17.3;
% tlist = 0:0.02:60*17.3;
%--- Choose geometry ----%
% Possibilities: 'custom', 'Ponnappan', 'Faghri'
geom = 'Faghri';
[rOut_Wall, eps, rOut_wick, por, rOut_Na, l_first, l_evap, l_adiab,...
l_cond] = chooseGeometry(geom);
% ---- Mesh refinement ----%
% NB: the mesh is triangular over the 2D geometry.
% In this model, the edge of each triangle is fixed by the value of this
% variable.
meshAccuracy = 5;
x = 0:meshAccuracy:l_first+l_evap+l_adiab+l_cond;
% ---- Thermodynamic conditions ----%
% Possibilities: 'custom', 'Ponnappan', 'Faghri'
[T0, Q_heat] = TD_IC(geom);
% ---- Display geometry plots ----%
% When this variable is true, the geometry and mesh plots are displaied for
% the wick-wall region and for the sodium vapor region
display_geometry = 'True';
% ---- Stainless Steel SS304 properties (Wall and solid structure of the wick) ----%
[rho_Wall, k_Wall, Cp_Wall] = wall_properties ();
% ---- Sodium properties (Solid-Liquid-Vapour) ---- % Reference: https://inis.iaea.org/collection/NCLCollectionStore/_Public/43/095/43095088.pdf
[MmNa, P, k_NaS, k_NaL, rho_NaS, rho_NaL, rho_NaG, rho_Namelt,...
Cp_NaS, Cp_NaL, Cp_NaG, Cp_Namelt, visc_Na, Tmelt_Na, Tevap_Na,...
deltaT, H, Hvap, hs, hl, hv] = sodium_properties();
% ---- Surrogate model for the sodium thermal conductivity representing the phase change ----%
% Diffusion coefficients
vBar = @(~,state) sqrt(8*BoltzmannConstant.*state.u./(pi*MmNa))*1e3; % [mm/s] CHECKED
Dk = @(~,state) 2/3*rOut_Na.*vBar(0,state); % [mm^2/s] CHECKED
Dvisc_adiab = @(~,state) rOut_Na^2./(8.*visc_Na(0,state)).*P(0,state); % [mm^2/s] CHECKED
Dvisc_evap = @(~,state) rOut_Na^2./(4.*visc_Na(0,state)).*P(0,state); % [mm^2/s] CHECKED
D_Na_adiab = @(~,state) Dk(0,state) + Dvisc_adiab(0,state); % [mm^2/s] CHECKED
D_Na_evap = @(~,state) Dk(0,state) + Dvisc_evap(0,state); % [mm^2/s] CHECKED
% Effective thermal conductivities
k_evap = @(~,state) D_Na_evap(0,state).*(hl(0,state)*Hvap*MmNa.*P(0,state)*1e-6)./(R/MmNa*Avog*BoltzmannConstant*state.u.^3); % [W/mm*K]
k_adiab = @(~,state) D_Na_adiab(0,state).*(hv(0,state)*Hvap*MmNa.*P(0,state)*1e-6)./(R/MmNa*Avog*BoltzmannConstant*state.u.^3); % [W/mm*K]
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% -------- End of User input -------- %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Transient and steadystate models creation
% PDE model creation - Transient region
thermalModelHP = createpde('thermal','transient-axisymmetric'); % page 5-243 of the guide
thermalModelHP.StefanBoltzmannConstant = 5.670373e-8*1e-6; % Stefan-Boltzmann constant, W/(mm^2-K^4)
[faceDomainsTrans, nodes_wallWick] = build_wickWall(thermalModelHP, meshAccuracy, rOut_Na, rOut_wick,...
rOut_Wall, l_first, l_evap, l_adiab, l_cond, display_geometry);
% PDE model creation - Steadystate region
thermalModelHP_steady = createpde('thermal','steadystate-axisymmetric'); % page 5-243 of the guide
% Create customized mesh
[nodes_Na, triangles_Na, faceDomainsSteady] = customMesh(thermalModelHP_steady, meshAccuracy, l_first+l_evap+l_adiab+l_cond, rOut_Na, display_geometry);
%% Define thermal properties %%
% Wall
thermalConductivity.Wall = k_Wall;
spHeat.Wall = Cp_Wall;
density.Wall = rho_Wall;
% Wick
kNa_melt = @(~,state) k_NaS + ...
(k_NaL(0,state) - k_NaS).*(state.u - Tmelt_Na - deltaT)./(2*deltaT);
CpMelt = @(~,state) (Cp_NaS + Cp_NaL(0,state))/2 + H/(2*deltaT);
% CpEvap = @(~,state) (Cp_NaL(0,state) + Cp_NaG(0,state))/2 + Hvap/(2*deltaT); In theory, we assume that no evaporation happens in the wick
thermalConductivity.Wick = @(~,state) (k_NaS*(k_NaS + k_Wall(0,state) - (1-por)*(k_NaS - k_Wall(0,state)))./...
(k_NaS + k_Wall(0,state) + (1-por)*(k_NaS - k_Wall(0,state)))).*(state.u < (Tmelt_Na - deltaT))...
+ (kNa_melt(0,state).*(kNa_melt(0,state) + k_Wall(0,state) -...
(1-por)*(kNa_melt(0,state) - k_Wall(0,state)))./...
(kNa_melt(0,state) + k_Wall(0,state) + (1-por)*(kNa_melt(0,state) - k_Wall(0,state))))...
.*(state.u >= (Tmelt_Na - deltaT) & state.u <= (Tmelt_Na + deltaT))...
+ (k_NaL(0,state).*(k_NaL(0,state) + k_Wall(0,state)...
- (1-por)*(k_NaL(0,state) - k_Wall(0,state)))./...
(k_NaL(0,state) + k_Wall(0,state) + (1-por)*(k_NaL(0,state) - k_Wall(0,state))))...
.*(state.u > (Tmelt_Na + deltaT));
spHeat.Wick = @(~,state) (por*Cp_NaS + (1-por)*Cp_Wall(0,state)).*(state.u < (Tmelt_Na - deltaT)) + ...
(por*CpMelt(0,state) + (1-por)*Cp_Wall(0,state)).*(state.u >= (Tmelt_Na - deltaT) & state.u <= (Tmelt_Na + deltaT)) + ...
(por*Cp_NaL(0,state) + (1-por)*Cp_Wall(0,state)).*(state.u > Tmelt_Na + deltaT);
% (por*Cp_NaL(0,state) + (1-por)*Cp_Wall(0,state)).*(state.u > Tmelt_Na + deltaT & state.u < Tevap_Na - deltaT) + ...
% (por*CpEvap(0,state) + (1-por)*Cp_Wall(0,state)).*(state.u >= (Tevap_Na - deltaT) & state.u <= (Tevap_Na + deltaT)) + ...
% (por*Cp_NaG(0,state) + (1-por)*Cp_Wall(0,state)).*(state.u > (Tevap_Na + deltaT));
density.Wick = @(~,state) (por*rho_NaS + (1-por)*rho_Wall).*(state.u < Tmelt_Na) + ...
(por*rho_Namelt + (1-por)*rho_Wall).*(state.u >= (Tmelt_Na - deltaT) & state.u <= (Tmelt_Na + deltaT)) + ...
(por*rho_NaL(0,state) + (1-por)*rho_Wall).*(state.u > Tmelt_Na + deltaT);
% Sodium
thermalConductivity.Na = @(location,state) ...
k_adiab(0,state).*(location.y >= 0 & location.y < l_first) + ...
k_evap(0,state).*(location.y >= l_first & location.y <= (l_first+l_evap) & location.y >= (l_first+l_evap+l_adiab) & location.y <= (l_first+l_evap+l_adiab+l_cond)) + ...
k_adiab(0,state).*(location.y > l_first+l_evap & location.y < (l_first+l_evap+l_adiab));
spHeat.Na = @(~,state) Cp_NaG(0,state);
density.Na = @(~,state) rho_NaG(0,state);
%% Define constant boundary conditions %%
% Heat flux on evaporator wall
fluxSS = @(~,state) Q_heat/(2*pi*rOut_Wall*l_evap); % [W/mm^2]
% Boundary condition to be applied for the first iteration ONLY on the left
% boundary of the wick-wall structure: it assumes steady state heat
% conduction (same heat flux on the right and left surfaces). It can be
% improved most probably, but I have run out of ideas.
flux = @(location,state) -Q_heat/(2*pi*rOut_Wall*l_evap).*(location.y >= l_first & location.y <= (l_first+l_evap)) + ...
0.*(location.y > (l_first+l_evap));
% BC definition for the PDE toolbox - TRANSIENT REGION
thermalBC(thermalModelHP,'Edge',7,'AmbientTemperature',293,...
'Emissivity', eps); % Condenser's edge
thermalBC(thermalModelHP,'Edge',4, 'HeatFlux', 0); % First adiabatic's edge
thermalBC(thermalModelHP,'Edge',6, 'HeatFlux', 0); % Adiabatic's edge
thermalBC(thermalModelHP,'Edge',5, 'HeatFlux', fluxSS); % Evaporator's edge
thermalBC(thermalModelHP,'Edge',9, 'HeatFlux', 0); % Condenser end plate - Wall
thermalBC(thermalModelHP,'Edge',8, 'HeatFlux', 0); % Condenser end plate - Wick
thermalBC(thermalModelHP,'Edge',3, 'HeatFlux', 0); % Evaporator end plate - Wall
thermalBC(thermalModelHP,'Edge',2, 'HeatFlux', 0); % Evaporator end plate - Wick
% BC definition for the PDE toolbox - STEADY STATE REGION
thermalBC(thermalModelHP_steady,'Edge',2, 'HeatFlux', 0); % Evaporator end plate - Na
thermalBC(thermalModelHP_steady,'Edge',3, 'HeatFlux', 0); % Condenser end plate - Na
%% Definition of the weakly-coupled solver %%
% Initialize solution as a struct
tempDistr = struct();
tempDistr.T_wickWall = T0*ones(size(nodes_wallWick,2),length(tlist)); %zeros(nodes_trans,length(tlist))% CHECK, MAYBE NOT OK TO CALL THIS AS AN ARRAY, MAYBE IT IS A STRUCT
tempDistr.T_Na = T0*ones(size(nodes_Na,2),length(tlist));
% It takes long and it is prone to instabilities...
for ii = 1:length(tlist)-1
% Set the non-constant BC & IC definition - Transient region
if (ii==1)
thermalIC(thermalModelHP, unique(tempDistr.T_wickWall(:,1)));
else
thermalIC(thermalModelHP, result_wickWall);
end
% WHAT CONDITION TO GIVE HERE? MAYBE ASSUMING CONTINUOUS FLUX AS FIRST
% INPUT? WATCH OUT ALSO FOR AXISYMMETRIC BC OF THE MODEL: IS IT RIGHT
% FOR AN HOLLOW CYCLINDER?
thermalBC(thermalModelHP,'Edge',1, 'HeatFlux', flux); % Symmetry (dudx = 0): not needed because the problem is specified as axisymmetric
IDX = 1;
for domain = faceDomainsTrans
thermalProperties(thermalModelHP, ...
ThermalConductivity=thermalConductivity.(domain), ...
SpecificHeat=spHeat.(domain), ...
MassDensity=density.(domain), ...
Face=IDX);
IDX = IDX+1;
end
% Solve the transient case
thermalModelHP.SolverOptions.RelativeTolerance = 1e-2;
thermalModelHP.SolverOptions.AbsoluteTolerance = 1e-4;
thermalModelHP.SolverOptions.ResidualTolerance = 1e-3;
thermalModelHP.SolverOptions.MaxIterations = 50;
thermalModelHP.SolverOptions.ReportStatistics = 'on';
fprintf('Statistics for wick-wall transient calculations at %f\n', tlist(ii))
result_wickWall = solve(thermalModelHP,[tlist(ii) tlist(ii+1)]);
fprintf('\n')
% Update the struct containing the temperature distribution for each
% time step - transient region
tempDistr.T_wickWall(:,ii+1) = result_wickWall.Temperature(:,2); % MAYBE HERE A STRUCT IS NEEDED, NOT AN ARRAY
% -------------------------------------------------------------------------------------------------------------------------%
% Set the non-constant BC & IC definition - Steady state region
if (ii==1)
thermalIC(thermalModelHP_steady, unique(tempDistr.T_Na(:,1)));
else
thermalIC(thermalModelHP_steady, result_Na);
end
xPoints = thermalModelHP.Mesh.Nodes(2,find(thermalModelHP.Mesh.Nodes(1,:)==rOut_Na));
status.u = result_wickWall.Temperature(find(thermalModelHP.Mesh.Nodes(1,:)==rOut_Na),2);
KAPPA = k_evap(0,status);
gradT_Na = result_wickWall.RGradients(find(thermalModelHP.Mesh.Nodes(1,:)==rOut_Na),2);
iter_flux = -KAPPA.*gradT_Na;
flux = @(location,~) interp1(xPoints, iter_flux, location.y, 'linear', 'extrap');
% Spatial non-constant BC for steady state region
% AM I UPDATING RIGHT THE FLUX?
thermalBC(thermalModelHP_steady,'Edge',1, 'HeatFlux', flux,...
'Vectorized', 'on'); % Na-wick interface
% thermalBC(thermalModelHP_steady,'Edge',4, 'HeatFlux', 0); % Symmetry (dudx = 0): not needed because the problem is specified as axisymmetric
IDX = 1;
for domain = faceDomainsSteady
thermalProperties(thermalModelHP_steady, ...
ThermalConductivity=thermalConductivity.(domain), ...
Face=IDX);
IDX = IDX+1;
end
thermalModelHP_steady.SolverOptions.ReportStatistics = 'on';
fprintf('Statistics for Na vapor core steady state calculations at %f\n', tlist(ii));
result_Na = solve(thermalModelHP_steady);
fprintf('\n')
% Update the struct containing the temperature distribution for each
% time step - steady state region
tempDistr.T_Na(:,ii+1) = result_Na.Temperature(:,1);
xPointsSS = thermalModelHP_steady.Mesh.Nodes(2,find(thermalModelHP_steady.Mesh.Nodes(1,:)==rOut_Na));
statusSS.u = result_Na.Temperature(find(thermalModelHP_steady.Mesh.Nodes(1,:)==rOut_Na),1);
KAPPASS = k_evap(0,statusSS);
gradT_NaSS = result_Na.RGradients(find(thermalModelHP_steady.Mesh.Nodes(1,:)==rOut_Na),1);
iter_fluxSS = +KAPPASS.*gradT_NaSS;
flux = @(location,~) interp1(xPointsSS, iter_fluxSS, location.y, 'linear', 'extrap');
end
%%
T_wickWall = result_wickWall.Temperature;
figure
pdeplot(thermalModelHP,'XYData',T_wickWall(:,2),'ZData',T_wickWall(:,2))
T_Na = result_Na.Temperature;
figure
pdeplot(thermalModelHP_steady,'XYData',T_Na(:,1),'ZData',T_Na(:,1))

Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by