How to introduce 2nd order derivative term in pdepe?
    3 Ansichten (letzte 30 Tage)
  
       Ältere Kommentare anzeigen
    
Hi,
Refer to the subject cited above, I'm not sure if it is possible or not to introduce second order derivative term in pdepe?

As shown in the image as above, I tried to introduce this 2nd derivative term by a new variable u4 in the code. Such that 
u4 = DuDx(3), with source as DuDx(3) and zero flux. The ic and bc are also introduced in the code. 
But, the code doesn't work as it gives "Spatial discretization error".
% solve 3-F bifurcaiton model 
function pde2fshear_v4Perturbed_nonlinear
global chi0;   % declare global variables
global D0;
global chi1;
global D1;
global alpha_chi;
global alpha_D;
global H0;
global S0;
global H;
global S;
global data;
global track;
global xstep;
global tstep;
global count;
global chi_growth;
global lambda_suppress;
global v_e;
global chi_ano;
global D_ano;
global sigma_turb;
global gamma_nonlin;
global alpha_nonlin;
global group_vel;
global drift_vel;
global intensity_diff;
global drift_velFluct;
global D_0;
global z;
%define values for constants
data.constant.critgradpressure =  1.2; 
data.constant.critgraddensity =   1.0;
count = 1;
chi0 = 0.5;
D0 = 0.5;
chi1 = 5.0;
D1 = 5.0;
alpha_chi = 0.1;
alpha_D = 0.1;
H0 = 27;
S0 = 21;
track = 1;
chi_growth=20;
lambda_suppress=0.1 ;
chi_ano=10;
D_ano=10;
% For nonlinear model
gamma_nonlin = 1;
alpha_nonlin =1;
D_0 = 1;
group_vel=0;
%position and time grids information
xstep = 100;
tstep = 1000; 
xmin = 0;
xmax = 1;
tmin = 0;
tmax = 50;
%tmax = 1;
m = 0; %define type of equation to solve
%Preallocate vectors for speed improvement
grad_u1 = zeros(tstep,xstep);
grad_u2 = zeros(tstep,xstep);
grad_u3 = zeros(tstep,xstep);
curve_u1 = zeros(tstep,xstep);
curve_u2 = zeros(tstep,xstep);
curve_u3 = zeros(tstep,xstep);
flowshear_p = zeros(tstep,xstep);
flowshear_n = zeros(tstep,xstep);
Q = zeros(tstep,xstep);
Q0 = zeros(tstep,xstep);
Q1 = zeros(tstep,xstep);
neo_p = zeros(tstep,xstep);
ano_p = zeros(tstep,xstep);
Gam = zeros(tstep,xstep);
Gam0 = zeros(tstep,xstep);
Gam1 = zeros(tstep,xstep);
neo_n = zeros(tstep,xstep);
ano_n = zeros(tstep,xstep);
%define first inner half of the plasma
%x = linspace(xmin,xmax/2,xstep/5);
x = linspace(xmin,xmax,xstep);
t = linspace(tmin,tmax,tstep);
%Add smaller grid size near plasma edge
%for i=(xstep/5)+1:xstep
 %   x(i) = x(i-1)+(xmax/2)/(xstep-(xstep/5));
%end
data.variable.x = x;
sol = pdepe(m,@pdex2pde,@pdex2ic,@pdex2bc,x,t);
% Extract the first solution component as u1 = pressure
% second solution component as u2 = density
% third solution component as u3 = turbulence intensity
% fourth solution component as u4 = gradient of turbulence intensity
u1 = sol(:,:,1);
u2 = sol(:,:,2);
u3 = sol(:,:,3); 
u4 = sol(:,:,4);
%grad_u = gradient(u,(x(2)-x(1)));
for j=1:tstep
    for i = 1:xstep/5
        if i == 1
            grad_u1(j,i) = (u1(j,2)-u1(j,1))/(x(2)-x(1));
            grad_u2(j,i) = (u2(j,2)-u2(j,1))/(x(2)-x(1));
            grad_u3(j,i) = (u3(j,2)-u3(j,1))/(x(2)-x(1));
            grad_u4(j,i) = (u4(j,2)-u4(j,1))/(x(2)-x(1));
        elseif i == xstep/5
            grad_u1(j,i) = (u1(j,i)-u1(j,i-1))/(x(i)-x(i-1));
            grad_u2(j,i) = (u2(j,i)-u2(j,i-1))/(x(i)-x(i-1));
            grad_u3(j,i) = (u3(j,i)-u3(j,i-1))/(x(i)-x(i-1));
            grad_u4(j,i) = (u4(j,i)-u4(j,i-1))/(x(i)-x(i-1));
        else
            grad_u1(j,i) = (u1(j,i+1)-u1(j,i-1))/(x(i+1)-x(i-1));
            grad_u2(j,i) = (u2(j,i+1)-u2(j,i-1))/(x(i+1)-x(i-1));
            grad_u3(j,i) = (u3(j,i+1)-u3(j,i-1))/(x(i+1)-x(i-1));
            grad_u4(j,i) = (u4(j,i+1)-u4(j,i-1))/(x(i+1)-x(i-1));            
        end
    end
    for i=(xstep/5)+1:xstep
        if i == xstep/5+1
            grad_u1(j,i) = (u1(j,i+1)-u1(j,i))/(x(i+1)-x(i));
            grad_u2(j,i) = (u2(j,i+1)-u2(j,i))/(x(i+1)-x(i));
            grad_u3(j,i) = (u3(j,i+1)-u3(j,i))/(x(i+1)-x(i));
            grad_u4(j,i) = (u4(j,i+1)-u4(j,i))/(x(i+1)-x(i));            
        elseif i == xstep
            grad_u1(j,i) = (u1(j,i)-u1(j,i-1))/(x(i)-x(i-1));
            grad_u2(j,i) = (u2(j,i)-u2(j,i-1))/(x(i)-x(i-1));
            grad_u3(j,i) = (u3(j,i)-u3(j,i-1))/(x(i)-x(i-1));
            grad_u4(j,i) = (u4(j,i)-u4(j,i-1))/(x(i)-x(i-1));            
        else
            grad_u1(j,i) = (u1(j,i+1)-u1(j,i-1))/(x(i+1)-x(i-1));
            grad_u2(j,i) = (u2(j,i+1)-u2(j,i-1))/(x(i+1)-x(i-1));
            grad_u3(j,i) = (u3(j,i+1)-u3(j,i-1))/(x(i+1)-x(i-1));
            grad_u4(j,i) = (u4(j,i+1)-u4(j,i-1))/(x(i+1)-x(i-1));            
        end
    end
end
 for i=1:tstep
     for j=1:xstep
          v_e = -grad_u1(i,j)*grad_u2(i,j)/u2(i,j)^2;             % -g_p*g_n/n^2
          flowshear_p(i,j) = 1+ alpha_chi*v_e^2;
          flowshear_n(i,j) = 1+ alpha_D*v_e^2;
         if abs(grad_u1(i,j)) < abs(data.constant.critgradpressure) %&& abs(grad_u2(i,j)) < abs(data.constant.critgraddensity) 
             Q(i,j) = -grad_u1(i,j)*chi0;
             Q0(i,j) = Q(i,j);
             Q1(i,j) = 0;
             neo_p(i,j) = chi0*(1+grad_u1(i,j))/(1+grad_u1(i,j));
             ano_p(i,j) = 0;
             Gam(i,j) = -grad_u2(i,j)*D0;
             Gam0(i,j) = Gam(i,j);
             Gam1(i,j) = 0;
             neo_n(i,j) = D0*(1+grad_u2(i,j))/(1+grad_u2(i,j));
             ano_n(i,j) = 0;
             intensity_diff(i,j) = D_0*u3(i,j).^alpha_nonlin;
             drift_velFluct(i,j)=D_0*alpha_nonlin*grad_u3(i,j).^(alpha_nonlin-1)*grad_u3(i,j);
             drift_vel(i,j) = group_vel + drift_velFluct(i,j);
         elseif abs(grad_u1(i,j)) >= abs(data.constant.critgradpressure) %&& abs(grad_u2(i,j)) < abs(data.constant.critgraddensity)
            Q(i,j) = (chi0*(-grad_u1(i,j)) + chi_ano*(-grad_u1(i,j)+data.constant.critgradpressure)*u3(i,j)/flowshear_p(i,j))*(-grad_u1(i,j)); 
            Q0(i,j) = -grad_u1(i,j)*chi0;
            Q1(i,j) = (chi_ano*(-grad_u1(i,j)+data.constant.critgradpressure)*u3(i,j)/flowshear_p(i,j))*(-grad_u1(i,j));
            neo_p(i,j) = chi0*(1+grad_u1(i,j))/(1+grad_u1(i,j));
            ano_p(i,j) = chi_ano*(abs(grad_u1(i,j))+data.constant.critgradpressure)*u3(i,j)/flowshear_p(i,j)*(-grad_u1(i,j)); 
            Gam(i,j) = -grad_u2(i,j)*D0;
            Gam0(i,j) = Gam(i,j);
            Gam1(i,j) = 0;
            neo_n(i,j) = D0*(1+grad_u2(i,j))/(1+grad_u2(i,j));
            ano_n(i,j) = 0;
            intensity_diff(i,j) = D_0*u3(i,j).^alpha_nonlin;
            drift_velFluct(i,j)=D_0*alpha_nonlin*grad_u3(i,j).^(alpha_nonlin-1)*grad_u3(i,j);
            drift_vel(i,j) = group_vel + drift_velFluct(i,j);
       else
             Q(i,j) = (chi0*(-grad_u1(i,j)) + chi_ano*(-grad_u1(i,j)+data.constant.critgradpressure)*u3(i,j)/flowshear_p(i,j))*(-grad_u1(i,j)); 
             Q0(i,j) = -grad_u1(i,j)*chi0;
             Q1(i,j) = (chi_ano*(-grad_u1(i,j)+data.constant.critgradpressure)*u3(i,j)/flowshear_p(i,j))*(-grad_u1(i,j));
             neo_p(i,j) = chi0*(1+grad_u1(i,j))/(1+grad_u1(i,j));
             ano_p(i,j) = chi_ano*(abs(grad_u1(i,j))+data.constant.critgradpressure)*u3(i,j)/flowshear_p(i,j)*(-grad_u1(i,j));
             Gam(i,j) = -grad_u2(i,j)*(D0 + D_ano*(-grad_u2(i,j)+data.constant.critgraddensity)*u3(i,j)/flowshear_n(i,j));
             Gam0(i,j) = -grad_u2(i,j)*D0;
             Gam1(i,j) = -grad_u2(i,j)*D_ano*(-grad_u2(i,j)+data.constant.critgraddensity)*u3(i,j)/flowshear_n(i,j);
             neo_n(i,j) = D0*(1+grad_u2(i,j))/(1+grad_u2(i,j));
             ano_n(i,j) = D_ano*(abs(grad_u2(i,j))+data.constant.critgraddensity)/flowshear_n(i,j);
             intensity_diff(i,j) = D_0*u3(i,j).^alpha_nonlin;
             drift_velFluct(i,j)=D_0*alpha_nonlin*grad_u3(i,j).^(alpha_nonlin-1)*grad_u3(i,j);
             drift_vel(i,j) = group_vel + drift_velFluct(i,j);
         end
     end
 end
%curve_u = gradient(grad_u,(x(2)-x(1)));
for j=1:tstep
    for i = 1:xstep/5
        if i == 1
            curve_u1(j,i) = (grad_u1(j,2)-grad_u1(j,1))/(x(2)-x(1));
            curve_u2(j,i) = (grad_u2(j,2)-grad_u2(j,1))/(x(2)-x(1));
            curve_u3(j,i) = (grad_u3(j,2)-grad_u3(j,1))/(x(2)-x(1));
            curve_u4(j,i) = (grad_u4(j,2)-grad_u4(j,1))/(x(2)-x(1));
        elseif i == xstep/5
            curve_u1(j,i) = (grad_u1(j,i)-grad_u1(j,i-1))/(x(i)-x(i-1));
            curve_u2(j,i) = (grad_u2(j,i)-grad_u2(j,i-1))/(x(i)-x(i-1));
            curve_u3(j,i) = (grad_u3(j,i)-grad_u3(j,i-1))/(x(i)-x(i-1));
            curve_u4(j,i) = (grad_u4(j,i)-grad_u4(j,i-1))/(x(i)-x(i-1));
        else
            curve_u1(j,i) = (grad_u1(j,i+1)-grad_u1(j,i-1))/(x(i+1)-x(i-1));
            curve_u2(j,i) = (grad_u2(j,i+1)-grad_u2(j,i-1))/(x(i+1)-x(i-1));
            curve_u3(j,i) = (grad_u3(j,i+1)-grad_u3(j,i-1))/(x(i+1)-x(i-1));
            curve_u4(j,i) = (grad_u4(j,i+1)-grad_u4(j,i-1))/(x(i+1)-x(i-1));           
        end
    end
    for i=(xstep/5)+1:xstep
        if i == xstep/5+1
            curve_u1(j,i) = (grad_u1(j,i+1)-grad_u1(j,i))/(x(i+1)-x(i));
            curve_u2(j,i) = (grad_u2(j,i+1)-grad_u2(j,i))/(x(i+1)-x(i));
            curve_u3(j,i) = (grad_u3(j,i+1)-grad_u3(j,i))/(x(i+1)-x(i));
            curve_u4(j,i) = (grad_u4(j,i+1)-grad_u4(j,i))/(x(i+1)-x(i));            
        elseif i == xstep
            curve_u1(j,i) = (grad_u1(j,i)-grad_u1(j,i-1))/(x(i)-x(i-1));
            curve_u2(j,i) = (grad_u2(j,i)-grad_u2(j,i-1))/(x(i)-x(i-1));
            curve_u3(j,i) = (grad_u3(j,i)-grad_u3(j,i-1))/(x(i)-x(i-1));
            curve_u4(j,i) = (grad_u4(j,i)-grad_u4(j,i-1))/(x(i)-x(i-1));           
        else
            curve_u1(j,i) = (grad_u1(j,i+1)-grad_u1(j,i-1))/(x(i+1)-x(i-1));
            curve_u2(j,i) = (grad_u2(j,i+1)-grad_u2(j,i-1))/(x(i+1)-x(i-1));
            curve_u3(j,i) = (grad_u3(j,i+1)-grad_u3(j,i-1))/(x(i+1)-x(i-1));
            curve_u4(j,i) = (grad_u4(j,i+1)-grad_u4(j,i-1))/(x(i+1)-x(i-1));           
        end
    end
end
%to save parameters and variables
data.constant.chi0 = chi0;
data.constant.D0 = D0;
data.constant.chi1 = chi1;
data.constant.D1 = D1;
data.constant.alphachi = alpha_chi;
data.constant.alphaD = alpha_D;
data.constant.H0 = H0;
data.constant.S0 = S0;
data.variable.pressure = u1;
data.variable.density = u2;
data.variable.turbulence= u3;
data.variable.intensity_diff=intensity_diff;
data.variable.drift_velFluct=drift_velFluct;
data.variable.drift_vel=drift_vel;
data.variable.gradpressure = grad_u1;
data.variable.graddensity = grad_u2;
data.variable.gradintensity = grad_u3;
data.variable.curvepressure = curve_u1;
data.variable.curvedensity = curve_u2;
data.variable.curveturbulence = curve_u3;
data.variable.x = x;
data.variable.t = t;
data.variable.Q = Q;
data.variable.Gamma = Gam;
data.variable.Q0 = Q0;
data.variable.Gamma0 = Gam0;
data.variable.neo_P = neo_p;
data.variable.neo_n = neo_n;
data.variable.Q1 = Q1;
data.variable.Gam1 = Gam1;
data.variable.ano_p = ano_p;
data.variable.ano_n = ano_n;
data.variable.heatsource = H;
data.variable.particlesource = S;
data.variable.wexb_p = flowshear_p;
data.variable.wexb_n = flowshear_n;
data.control.xgrid = xstep;
data.control.tgrid = tstep;
data.control.xmin = xmin;
data.control.xmax = xmax;
data.control.tmin = tmin;
data.control.tmax = tmax;
 % --------------------------------------------------------------
function [c,f,s] = pdex2pde(x,t,u,DuDx)
global chi0;
global D0;
global chi1;
global D1;
global H0;
global S0;
global data;
global xstep;
global alpha_chi;
global alpha_D;
global chi_growth;         % total growth rate
global length;
global theta_heaviside1;
global lambda_suppress;
global v_e;
global gamma_nonlin;
global alpha_nonlin;
global group_vel;
global drift_vel;
global intensity_diff;
global drift_velFluct;
global D_0;
global z;
%lf FFf F  Fb vfDdength = 0.01 or 1
length=1;
c = [1;1;1;0];
v_e = -DuDx(1)*DuDx(2)/u(2)^2;             % -g_p*g_n/n^2
flowshear_p = 1+ alpha_chi*v_e^2;
flowshear_n = 1+ alpha_D*v_e^2;
u(4)=DuDx(3); 
term1 = abs(DuDx(1))-data.constant.critgradpressure;
drift_velFluct = D_0*DuDx(3)^alpha_nonlin;
% Implementing Heaviside function for H-mode in p, n and I equations
if term1 > 0
    theta_heaviside1=1;
else
    theta_heaviside1=0;
end
%Turbulence intensity Equation for nonlinear turbulence intensity
s3 = (chi_growth*(term1*theta_heaviside1-lambda_suppress*v_e^2)-gamma_nonlin*u(3)^alpha_nonlin)*u(3)-(group_vel*DuDx(3)+D_0*(1+alpha_nonlin)*(alpha_nonlin*u(3)^(alpha_nonlin-1)*(DuDx(3))^2+u(3)^alpha_nonlin*u(4))) ;
s = [(H0)*exp(-100*x^2/length)+H0/2; (S0)*exp(-100*(x-0.9)^2/length)+S0/2;s3;DuDx(3)];
f = [chi0+chi1*u(3)/flowshear_p ; D0+D1*u(3)/flowshear_n ;D_0*(1+alpha_nonlin)*u(3)^alpha_nonlin;0].*DuDx;                 % flux term for nonlinear model
% --------------------------------------------------------------
function u0 = pdex2ic(x)
 %u0 = [eps; eps; eps;];
 %u0 = [0.01; 0.01; 0.01; 0.01;0.1*exp(-100*(x-1)^2)];
  u0 = [0.1*(1-x^2); 0.1*(1-x^2); 0.5*exp(-100*(x-1)^2);0.5*exp(-100*(x-1)^2)];
% --------------------------------------------------------------
function [pl,ql,pr,qr] = pdex2bc(xl,ul,xr,ur,t)
pl = [0; 0; 0; 0];
ql = [1; 1; 1; 1];
pr = [ur(1); ur(2); 0; ur(4)];
qr = [0.01; 0.1; 1; 1];
%---------------------------------------------------------------
 It would help me if someone advice me.
with rgds,
rc
0 Kommentare
Akzeptierte Antwort
  Torsten
      
      
 am 9 Jan. 2024
        
      Bearbeitet: Torsten
      
      
 am 9 Jan. 2024
  
      If all the second-order spatial derivatives in your equation can be written in one expression as d/dx(f(x,t,I,dI/dx)*dI/dx) with a suitably chosen function f, "pdepe" is able to handle your equation. If not, "pdepe" is not able to handle your equation. 
Even the term d^2/dx^2(D_I(I)*I) cannot be used without further manipulations within "pdepe" because it's not written in the necessary format.
9 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
				Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
			
	Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!


