Integrating a complex function

6 Ansichten (letzte 30 Tage)
Dmitry
Dmitry am 30 Okt. 2023
Kommentiert: Star Strider am 30 Okt. 2023
I want to count such an expression:
This function depends on "D", and "k" is why I'm doing the integration. The sum is here because my complex integration limits "k1" and "k2" depend on "en". I calculate all this, but the resulting array turns out to be empty, with both the real and imaginary parts.
Thank you very much in advance!
my code:
z = 5;
D = 5:0.1:100;
e_f = 1.88e-18;
m = 9.11e-31;
k_b = 1.38e-23;
h_bar = 1.05e-34;
ksi = 1e-9;
t = 1;
k_f = (1/h_bar)*sqrt(2*m*e_f); % k_F
N_0 = k_f^3/(3*pi^2); % Here k = k_F
v_f = 1.57e6;
l = 1.5e-10;
tau = l / v_f;
gamma = h_bar / (2*pi * k_b * 1.2 * tau);
E = e_f / (pi * k_b * 1.2);
nD = floor(375/(2*pi.*t*1.2) - 0.5);
% Pre-allocation of the array for results
result = zeros(size(D));
for j = 1:length(D)
S12 = 0;
for n = 0:nD
k1 = (1 + 1i)/sqrt(2) * sqrt(t * (2 * n + 1) + gamma); % Set the value to k1
k2 = (1 + 1i)/sqrt(2) * sqrt(E + 1i*(t * (2 * n + 1)) + 1i*gamma); % Set the value to k2
S12 = S12 + integral(@(k) (sin(k.*z) .* sin(k.*(z-D(j))) ) ./ sin(k.*D(j)), k1, k2);
end
result(j) = S12;
end
plot(D, result);
  3 Kommentare
Dmitry
Dmitry am 30 Okt. 2023
Bearbeitet: Dmitry am 30 Okt. 2023
Star Strider, that is, the problem is within the integration, and the rest of the code is correct?
Star Strider
Star Strider am 30 Okt. 2023
@Dmitry — I cannot determine that. I do not understand what the code is supposed to do.
I can only say that it is not correct if the results are uniformly NaN. Something is obviously wrong, because the NaN values are likely the result of the sin functions returning only values for their arguments that are integer multiples of pi. I suspect that is not what you want.

Melden Sie sich an, um zu kommentieren.

Antworten (1)

Sulaymon Eshkabilov
Sulaymon Eshkabilov am 30 Okt. 2023
Here are two points to consider:
(1) to specify the error tolerances and make them more crude, e.g.: 'RelTol',10,'AbsTol',0.1
(2) to compute Real and Imag parts of the function in separate corresponding to real and imaginary values of k1 and k2.
z = 5;
D = 5:0.1:100;
e_f = 1.88e-18;
m = 9.11e-31;
k_b = 1.38e-23;
h_bar = 1.05e-34;
ksi = 1e-9;
t = 1;
k_f = (1/h_bar)*sqrt(2*m*e_f); % k_F
N_0 = k_f^3/(3*pi^2); % Here k = k_F
v_f = 1.57e6;
l = 1.5e-10;
tau = l / v_f;
gamma = h_bar / (2*pi * k_b * 1.2 * tau);
E = e_f / (pi * k_b * 1.2);
nD = floor(375/(2*pi.*t*1.2) - 0.5);
%%
% Pre-allocation of the array for results
result = zeros(size(D));
for j = 1:length(D)
S12 = 0;
SI = 0;
SR = 0;
for n = 0:nD
k1 = (1 + 1i)/sqrt(2) * sqrt(t * (2 * n + 1) + gamma); % Set the value to k1
k2 = (1 + 1i)/sqrt(2) * sqrt(E + 1i*(t * (2 * n + 1)) + 1i*gamma); % Set the value to k2
k1R=real(k1); k2R=real(k2);
k1I=imag(k1); k2I=imag(k2);
SR = SR + integral(@(k) (sin(k.*z) .* sin(k.*(z-D(j))) ) ./ sin(k.*D(j)), k1R, k2R, 'RelTol',10,'AbsTol',0.1);
SI = SI + integral(@(k) (sin(k.*z) .* sin(k.*(z-D(j))) ) ./ sin(k.*D(j)), k1I, k2I, 'RelTol',10,'AbsTol',0.1);
% S12 = S12 + integral(@(k) (sin(k.*z) .* sin(k.*(z-D(j))) ) ./ sin(k.*D(j)), k1, k2, 'RelTol',10,'AbsTol',0.1);
end
R(j) = SR;
I(j) = SI;
% result(j) = S12;
end
%plot(D, result);
nexttile
plot(D, R)
ylabel('Real Part')
grid on
nexttile
plot(D, I)
ylabel('Imag part')
xlabel('D')
grid on
% If necessary, then Real and Imag parts can be combined
  1 Kommentar
Torsten
Torsten am 30 Okt. 2023
Bearbeitet: Torsten am 30 Okt. 2023
I get a wrong result when I apply your way of complex integration.
Did I misunderstand your code suggestion ?
% Usual definition of complex integral (path-independent since f is
% holomorphic)
f = @(z) z.^2;
k1 = 1i;
k2 = -1 - 2*1i;
k = @(t) (1-t)*k1 + t*k2;
kdot = @(t)-k1+k2;
fun = @(t) f(k(t))*kdot(t);
I1 = integral(fun,0,1)
I1 = 3.6667 + 1.0000i
% Evaluation via antiderivative
1/3*(k2^3-k1^3)
ans = 3.6667 + 1.0000i
% Your way to integrate
k1R=real(k1); k2R=real(k2);
k1I=imag(k1); k2I=imag(k2);
IR = integral(f,k1R,k2R);
II = integral(f,k1I,k2I);
I2 = IR + 1i*II
I2 = -0.3333 - 3.3333i

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Numerical Integration and Differential Equations finden Sie in Help Center und File Exchange

Produkte

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by