Problem with time plot from partial derivative equation solved by method of lines
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Raúl Rivera
am 28 Okt. 2023
Bearbeitet: Torsten
am 28 Okt. 2023
Hello, I have a problem ,I tried to solve an pde equation using method of lines but appears a warning when time increases that dont let me raise the time and has a limit at time 7.5 h , dont know to solve it . I show the equations to better see the problem.Thanks a lot.
desorcion_final(0.4,0.5,2,0.02,20,1520,8,50.63,3.76,100,"si")
%tf means the time in hours
function [a]=desorcion_final(L,eps,u,k_f,c0,rhop,tf,Kf,n,q_inicial,sn)
Nt=60;
tf=tf*3600;
t=linspace(0,tf,Nt);
Nz=70;
z=linspace(0,L,Nz);
dz=z(2)-z(1);
q0star=Kf*c0^(1/n);
%Initial conditions
ICA=ones(1,Nz)*c0;
ICB=ones(1,Nz)*q_inicial;
IC=[ICA ICB];
[t, y]=ode15s(@fun_pde,t,IC,[],Nz,eps,n,Kf,k_f,u,rhop,dz);
%define value
cc=y(:,1:Nz);
qq=y(:,Nz+1:2*Nz);
%recalculate new limit conditions
cc(:,1)=0;
cc(:,end)=cc(:,end-1); %dC/dz=0
%plotting
cp=cc(:,end)./c0;
qp=qq(:,end-1)/q_inicial;
if sn=="si"
plot(t/3600,(1-qp))
title('Curve desorption conc')
xlabel('time(hora)')
ylabel('Convertion')
end
%%
%Return
a(1)=(1-qp(end));%conversion;
a(2)=t(end)/3600; %tiempo;
%%
% PDE function
function dydt=fun_pde(t,y,Nz,eps,n,KF,k_f,u,rhop,dz)
dcdt=zeros(Nz,1);
dqdt=zeros(Nz,1);
c=y(1:Nz);
q=y(Nz+1:2*Nz);
%BC
c(1)=0; %BC1
c(end)=c(end-1);%BC2
%interior
for i=2:Nz-1
qstar(i)=KF.*c(i).^(1/n);%Freundlich isotherm
dqdt(i)=k_f.*(qstar(i)-q(i));
dcdz(i)=(c(i+1)-c(i-1))./2./dz;
dcdt(i)=-u*dcdz(i)-rhop*((1-eps)./eps).*dqdt(i);
end
dydt=[dcdt;dqdt];
end
end
0 Kommentare
Akzeptierte Antwort
Torsten
am 28 Okt. 2023
Bearbeitet: Torsten
am 28 Okt. 2023
It's "Conversion", not "Convertion".
And setting a boundary condition at z = L is incorrect because you only have convection, no diffusion.
desorcion_final(0.4,0.5,2,0.02,20,1520,8,50.63,3.76,100,"si")
%tf means the time in hours
function [a]=desorcion_final(L,eps,u,k_f,c0,rhop,tf,Kf,n,q_inicial,sn)
Nt=60;
tf=tf*3600;
t=linspace(0,tf,Nt);
Nz=70;
z=linspace(0,L,Nz);
dz=z(2)-z(1);
q0star=Kf*c0^(1/n);
%Initial conditions
ICA=ones(1,Nz)*c0;
ICB=ones(1,Nz)*q_inicial;
IC=[ICA ICB];
[t, y]=ode15s(@fun_pde,t,IC,[],Nz,eps,n,Kf,k_f,u,rhop,dz);
%define value
cc=y(:,1:Nz);
qq=y(:,Nz+1:2*Nz);
%recalculate new limit conditions
cc(:,1)=0;
%cc(:,end)=cc(:,end-1); %dC/dz=0
%plotting
cp=cc(:,end)./c0;
qp=qq(:,end-1)/q_inicial;
if sn=="si"
plot(t/3600,(1-qp))
title('Curve desorption conc')
xlabel('time(hora)')
ylabel('Convertion')
end
%%
%Return
a(1)=(1-qp(end));%conversion;
a(2)=t(end)/3600; %tiempo;
%%
% PDE function
function dydt=fun_pde(t,y,Nz,eps,n,KF,k_f,u,rhop,dz)
dcdt=zeros(Nz,1);
dqdt=zeros(Nz,1);
c=y(1:Nz);
q=y(Nz+1:2*Nz);
%BC
c(1)=0; %BC1
%c(end)=c(end-1);%BC2
%interior
for i=2:Nz
qstar(i)=KF.*c(i).^(1/n);%Freundlich isotherm
dqdt(i)=k_f.*(qstar(i)-q(i));
if i < Nz
dcdz(i)=(c(i+1)-c(i-1))/2/dz;
else
dcdz(i)=(c(i)-c(i-1))/dz;
end
dcdt(i)=-u*dcdz(i)-rhop*((1-eps)./eps).*dqdt(i);
end
dydt=[dcdt;dqdt];
end
end
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Eigenvalue Problems finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!