Filter löschen
Filter löschen

Algorithm 1. Set time step (increment) 2. set max number of time steps 3. start with ground values of temperature at x=0, y=0, z=0, theta=0, and a particular value of fi 4. co

2 Ansichten (letzte 30 Tage)
% Initialize variables
height = F2007120317S7627.Height;
wind_speed = F2007120317S7627.WS;
wind_direction = F2007120317S7627.WD;
temperature = F2007120317S7627.Temp0;
humidity = F2007120317S7627.HumiS;
min_humid = max(humidity);
theta_limit = 45;
time_limit = 100;
phi_limit = 90;
delta_vx = zeros(101, 1);
delta_vy = zeros(101, 1);
delta_x = zeros(theta_limit, phi_limit);
delta_y = zeros(theta_limit, phi_limit);
delta_z = zeros(theta_limit, phi_limit);
delta_theta = zeros(theta_limit, phi_limit);
x = zeros(theta_limit, phi_limit);
y = zeros(theta_limit, phi_limit);
z = zeros(time_limit, theta_limit); % Fixed dimension
delta_t = 0.1;
theta_end = zeros(theta_limit + 1, phi_limit);
phi = linspace(0, 2 * pi, phi_limit);
theta = linspace(0, pi / 2, theta_limit);
temp1 = 26.3;
delta_t = 1;
vx1 = 0;
vy1 = 0;
alti_matrix = [];
vx = zeros(time_limit, theta_limit);
vy = zeros(time_limit, theta_limit);
cs = zeros(time_limit, theta_limit);
z = zeros(time_limit, theta_limit); % Fixed dimension
cs(1, :) = 331;
for i = 1:theta_limit
delta_z(1, i) = z(1, i) + (cs(1, i) * cos(theta(1, i))) * delta_t;
z(1, i) = delta_z(1, i);
year = z(1, i);
alti_matrix = [alti_matrix, year];
yr = linspace(0, 180, time_limit);
altitude = 0:z(1, i):z(1, i) * 4;
% alt(k,i) = altitude(1,k);
temp1 = spline(height, temperature, altitude);
temp_inv = temp1.';
speed1 = interp1(height, wind_speed, altitude);
speed_inv = speed1.';
dir1 = interp1(height, wind_direction, altitude);
dir_inv = dir1.';
vx(1, i) = speed_inv(1, 1) * cos(deg2rad(dir_inv(1, 1)));
vy(1, i) = speed_inv(1, 1) * sin(deg2rad(dir_inv(1, 1)));
% delta_vx(1,i) = vx(1,i) - vx(1,i);
% delta_vy(1,i) = vy(1,1) - vy(1,i);
humd1 = interp1(height, humidity, altitude);
humd_inv = humd1.';
q(1, i) = humd_inv(1, 1) / min_humid;
temp_kelvin(1, i) = (273.15 + temp_inv(1, 1)) * (1 + 0.608 * q(1, i));
cs(1, i) = 20.047 * sqrt(temp_kelvin(1, i));
% delta_cs(1,i) = cs(k+1,i) - cs(k,i);
end

Akzeptierte Antwort

Bhavani Sankar
Bhavani Sankar am 25 Sep. 2023
timeStep = 0.1;
maxTimeSteps = 100;
initialTemperature = 25.0;
initialTheta = 0.0;
initialPhi = 45.0;
deltaTheta = 1.0;
x = 0;
y = 0;
z = 0;
theta = initialTheta;
phi = initialPhi;
temperature = initialTemperature;
temperatureHistory = zeros(maxTimeSteps, 1);
NxHistory = zeros(maxTimeSteps, 1);
NyHistory = zeros(maxTimeSteps, 1);
for t = 1:maxTimeSteps
% Store temperature at current time step
temperatureHistory(t) = temperature;
Nx = sin(theta); % Replace with your calculation
Ny = cos(theta); % Replace with your calculation
NxHistory(t) = Nx;
NyHistory(t) = Ny;
deltaX = 0.1; % Replace with your calculation
deltaY = 0.2; % Replace with your calculation
deltaZ = 0.3; % Replace with your calculation
deltaTheta = 0.1; % Replace with your calculation
x = x + deltaX;
y = y + deltaY;
z = z + deltaZ;
theta = theta + deltaTheta;
interpolatedTemperature = initialTemperature + z * 0.2; % Example interpolation
temperature = interpolatedTemperature;
if z >= someTerminationCondition
break;
end

Weitere Antworten (0)

Kategorien

Mehr zu Biomedical Imaging finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by