2D FFT interpolation - Keeping the amplitude
12 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
canadarunner
am 7 Aug. 2023
Kommentiert: canadarunner
am 7 Aug. 2023
% input
matrix = [1.41 + 0.31i,-0.480 + 1.47i,-1.67 + 2.23i,-2.38 + 2.02i,-2.07 + 1.47i,-1.11 + 0.34i,-0.0900 - 0.65i,0.700 - 0.79i,1.14 - 0.36i;...
0.180 - 0.10i,-1.22 + 0.51i,-1.66 + 0.86i,-0.590 + 0.070i,0.410 + 0.070i,0.0300 + 0.99i,-0.300 + 0.67i,0.430 + 0.23i,0.640 + 0.09i;...
2.11 - 1.18i,0.350 - 1.01i,-0.850 - 0.84i,-0.200 - 1.74i,1.29 - 1.62i,1.59 - 0.16i,1.40 - 0.16i,1.65 - 0.36i,1.53 + 0.13i;...
0.990 - 2.39i,1.40 - 1.85i,4.22 - 0.01i,6.95 + 1.01i,6.11 + 0.90i,3.04 + 0.17i,1.06 - 0.34i,0.640 - 0.98i,0.900 - 0.71i;...
1.07 - 2.58i,1.73 - 0.80i,8.23 + 3.39i,16.28 + 7.73i,15.16 + 8.35i,6.40 + 4.22i,0.350 + 0.79i,-0.610 - 0.46i,-0.200 - 0.27i;...
1.73 - 1.20i,-0.200 + 0.94i,0.170 + 3.56i,3.85 + 5.13i,4.89 + 5.21i,2.14 + 2.96i,0.0300 + 0.12i,0.190 - 0.71i,0.470 + 0.19i;...
2.48 - 0.46i,1.02 + 1.28i,-1.16 + 2.32i,-1.67 + 1.71i,-0.890 + 0.55i,-0.100 + 0.21i,0.270 - 0.34i,0.710 - 0.57i,0.930 - 0.17i;...
2.01 + 3.41i,2.02 + 2.68i,-0.130 + 2.40i,-1.26 + 1.97i,-1.21 + 2.15i,0.0600 + 1.64i,1.06 + 0.88i,0.620 + 0.58i,-0.0500 + 0.31i;...
-0.230 + 7.51i,0.400 + 2.68i,-0.760 + 1.70i,-1.46 + 1.57i,-2.02 + 1.70i,-1.42 + 1.35i,0.00 + 1.16i,-0.330 + 0.86i,-1.19 + 0.56i];
% 2d FFT interpolation
interpol_size = 100;
k = fft2(matrix);
k = fftshift(k);
k_scale = padarray(k,[interpol_size,interpol_size]/2,'both');
k_scale = ifftshift(k_scale);
k_interpol = ifft2(k_scale);
% plot
tiledlayout(1,2)
nexttile
imagesc(abs(matrix))
colorbar
cb = colorbar;
cb.Label.String = "power (10*log10(abs(x))) [dB]";
title('original')
axis square
nexttile
imagesc(10*log10(abs(k_interpol)))
colorbar
cb = colorbar;
cb.Label.String = "power (10*log10(abs(x))) [dB]";
title('2Dfft interpolated')
axis square
I tried to interpolate the original data with a 2d fft, but afterwards unfortunately I don't get the same amplitude values. Altough I expect the values to be equal or bigger than the original based on the sampling theory.
I checked https://ch.mathworks.com/matlabcentral/answers/1900240-effect-of-zero-padding-on-fft-amplitude?s_tid=sug_su , but unfortunately I don't get it do extrapolate the information there into the multidimensional space (in my case 2d).
I know that interpft should work, but this works just in 1d.
0 Kommentare
Akzeptierte Antwort
Paul
am 7 Aug. 2023
Hi canadarunner,
The plot on the left is amplitude and the plot on the right is in dB. Changing the left plot to dB brings the plots closer.
In the same units, would you expect the values in the plot on the left to be larger?
Scaling the interpolated values by the numel(k_interpol)/numel(matrix) would then bring the two plots into alignment. I don't think that's a coincidence, but would have to give more thought to justify doing so.
% input
matrix = [1.41 + 0.31i,-0.480 + 1.47i,-1.67 + 2.23i,-2.38 + 2.02i,-2.07 + 1.47i,-1.11 + 0.34i,-0.0900 - 0.65i,0.700 - 0.79i,1.14 - 0.36i;...
0.180 - 0.10i,-1.22 + 0.51i,-1.66 + 0.86i,-0.590 + 0.070i,0.410 + 0.070i,0.0300 + 0.99i,-0.300 + 0.67i,0.430 + 0.23i,0.640 + 0.09i;...
2.11 - 1.18i,0.350 - 1.01i,-0.850 - 0.84i,-0.200 - 1.74i,1.29 - 1.62i,1.59 - 0.16i,1.40 - 0.16i,1.65 - 0.36i,1.53 + 0.13i;...
0.990 - 2.39i,1.40 - 1.85i,4.22 - 0.01i,6.95 + 1.01i,6.11 + 0.90i,3.04 + 0.17i,1.06 - 0.34i,0.640 - 0.98i,0.900 - 0.71i;...
1.07 - 2.58i,1.73 - 0.80i,8.23 + 3.39i,16.28 + 7.73i,15.16 + 8.35i,6.40 + 4.22i,0.350 + 0.79i,-0.610 - 0.46i,-0.200 - 0.27i;...
1.73 - 1.20i,-0.200 + 0.94i,0.170 + 3.56i,3.85 + 5.13i,4.89 + 5.21i,2.14 + 2.96i,0.0300 + 0.12i,0.190 - 0.71i,0.470 + 0.19i;...
2.48 - 0.46i,1.02 + 1.28i,-1.16 + 2.32i,-1.67 + 1.71i,-0.890 + 0.55i,-0.100 + 0.21i,0.270 - 0.34i,0.710 - 0.57i,0.930 - 0.17i;...
2.01 + 3.41i,2.02 + 2.68i,-0.130 + 2.40i,-1.26 + 1.97i,-1.21 + 2.15i,0.0600 + 1.64i,1.06 + 0.88i,0.620 + 0.58i,-0.0500 + 0.31i;...
-0.230 + 7.51i,0.400 + 2.68i,-0.760 + 1.70i,-1.46 + 1.57i,-2.02 + 1.70i,-1.42 + 1.35i,0.00 + 1.16i,-0.330 + 0.86i,-1.19 + 0.56i];
% 2d FFT interpolation
interpol_size = 100;
k = fft2(matrix);
k = fftshift(k);
k_scale = padarray(k,[interpol_size,interpol_size]/2,'both');
k_scale = ifftshift(k_scale);
k_interpol = ifft2(k_scale);
% plot
tiledlayout(1,2)
nexttile
%imagesc(abs(matrix))
imagesc(10*log10(abs(matrix)))
colorbar
cb = colorbar;
cb.Label.String = "power (10*log10(abs(x))) [dB]";
title('original')
axis square
nexttile
imagesc(10*log10(abs(k_interpol)))
colorbar
cb = colorbar;
cb.Label.String = "power (10*log10(abs(x))) [dB]";
title('2Dfft interpolated')
axis square
1 Kommentar
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Colormaps finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!