Roots of an equation when two parameters are changed

2 Ansichten (letzte 30 Tage)
Fares
Fares am 19 Jun. 2023
Kommentiert: Fares am 22 Jun. 2023
I have this equation
r0=0.05;
k1=0.5;
k2=0.5;
mu=0.5;
rho=0.5;
epsilon=0.25;
K=1;
alpha=0.1;
q=0.1;
b=0.8;
zeta=0.075;
omega0=0.001
syms M sigma eta Msol positive
Nut(M) = mu+(rho*M/(1+M));
gro(M) = r0*(1+k1*Nut(M)*(1-k2*Nut(M)));
lam(M) = 1/(1+Nut(M));
P(M) = epsilon*M/(1+M);
eqn = (q./b).*gro(M).*(eta+P(M)).*(1+Nut(M)).*(1-(((alpha.*sigma.*q.*(eta+P(M)).*(1+Nut(M))+b.*(q+alpha).*(zeta.*M-omega0)))./(b.*alpha.*sigma.*K)))-(q./sigma).*(zeta.*M-omega0)==0;
I can compute the roots of this equation when sigma is varied and eta = 0.05 using the command
[num,den]=numden(lhs(eqn));
sigma_num = linspace(0.01,1,20);
for u = 1:numel(sigma_num)
Msol(u) = vpa(solve(subs(num,sigma,sigma_num(u))));
end
which will produce 20 roots, each one is related to each value of sigma. Now, I would like to compute the roots of the equation when two parameters are varied, say sigma and eta such that eta_num = linspace(0.01,1,20) as well. I believe I should end up having 400 roots but How I can do that? Any help is appreciated! Many thanks!

Akzeptierte Antwort

Torsten
Torsten am 19 Jun. 2023
Bearbeitet: Torsten am 19 Jun. 2023
"num" is a polynomial of degree 7 in M. Thus it has seven roots. But your code only gives one of these seven. So I hope you get the single root out of seven that you are after.
r0=0.05;
k1=0.5;
k2=0.5;
mu=0.5;
rho=0.5;
epsilon=0.25;
K=1;
alpha=0.1;
q=0.1;
b=0.8;
zeta=0.075;
omega0=0.001;
syms M sigma eta Msol positive
Nut(M) = mu+(rho*M/(1+M));
gro(M) = r0*(1+k1*Nut(M)*(1-k2*Nut(M)));
lam(M) = 1/(1+Nut(M));
P(M) = epsilon*M/(1+M);
eqn = (q./b).*gro(M).*(eta+P(M)).*(1+Nut(M)).*(1-(((alpha.*sigma.*q.*(eta+P(M)).*(1+Nut(M))+b.*(q+alpha).*(zeta.*M-omega0)))./(b.*alpha.*sigma.*K)))-(q./sigma).*(zeta.*M-omega0)==0;
[num,den]=numden(lhs(eqn));
sigma_num = linspace(0.01,1,20);
eta_num = linspace(0.01,1,20);
n = numel(eta_num);
m = numel(sigma_num);
M_num = zeros(n,m);
%M_num = cell(n,m);
for i = 1:n
for j = 1:m
M_num(i,j) = vpa(solve(subs(num,[eta sigma],[eta_num(i),sigma_num(j)])==0,M));
%M_num{i,j} = roots(sym2poly(subs(num,[eta sigma],[eta_num(i),sigma_num(j)])));
end
end
M_num
M_num = 20×20
0.0135 0.0146 0.0157 0.0168 0.0180 0.0193 0.0206 0.0219 0.0233 0.0248 0.0263 0.0279 0.0296 0.0314 0.0333 0.0352 0.0373 0.0395 0.0418 0.0442 0.0143 0.0194 0.0247 0.0302 0.0360 0.0420 0.0482 0.0547 0.0615 0.0686 0.0760 0.0837 0.0918 0.1002 0.1090 0.1181 0.1276 0.1376 0.1479 0.1587 0.0150 0.0240 0.0333 0.0431 0.0532 0.0638 0.0748 0.0862 0.0982 0.1106 0.1235 0.1369 0.1509 0.1654 0.1804 0.1959 0.2120 0.2286 0.2458 0.2635 0.0157 0.0284 0.0416 0.0554 0.0697 0.0847 0.1003 0.1164 0.1332 0.1507 0.1687 0.1874 0.2068 0.2268 0.2474 0.2687 0.2905 0.3130 0.3360 0.3597 0.0164 0.0326 0.0495 0.0672 0.0856 0.1047 0.1246 0.1452 0.1666 0.1887 0.2116 0.2352 0.2595 0.2845 0.3102 0.3366 0.3636 0.3912 0.4194 0.4481 0.0170 0.0366 0.0571 0.0785 0.1007 0.1238 0.1478 0.1727 0.1983 0.2249 0.2522 0.2803 0.3091 0.3387 0.3690 0.4000 0.4315 0.4637 0.4965 0.5297 0.0176 0.0405 0.0644 0.0893 0.1152 0.1421 0.1699 0.1987 0.2284 0.2590 0.2905 0.3227 0.3558 0.3895 0.4240 0.4591 0.4948 0.5311 0.5679 0.6053 0.0182 0.0442 0.0713 0.0996 0.1289 0.1594 0.1909 0.2234 0.2569 0.2913 0.3266 0.3627 0.3995 0.4371 0.4754 0.5142 0.5537 0.5937 0.6342 0.6752 0.0187 0.0477 0.0779 0.1094 0.1420 0.1759 0.2108 0.2468 0.2838 0.3217 0.3605 0.4001 0.4405 0.4816 0.5233 0.5656 0.6085 0.6519 0.6958 0.7401 0.0193 0.0510 0.0842 0.1187 0.1545 0.1915 0.2296 0.2689 0.3091 0.3503 0.3924 0.4353 0.4789 0.5232 0.5681 0.6135 0.6595 0.7060 0.7529 0.8002

Weitere Antworten (0)

Kategorien

Mehr zu Mathematics finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by