How to make a surface in polar coordinates using polar3d?
77 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hexe
am 1 Jun. 2023
Kommentiert: Star Strider
am 9 Jun. 2023
Hello! I have an integral for a function which I plot in polar coordinates at a fixed polar angle theta (th). How to write a 3D plot for R in polar coordinates (angles a and th changes)? I made it using pol2cart, but this is not the best way to present the result. If somebody can help me to plot using polar3D or something like this, it would be great. Thank you.
clear all
s = 3;
n = 1;
r = 1;
t = 0.1;
th = 0:10:360; % angle theta
a = 0:1:360; % angle alpha
b = sqrt(2*n*t);
L = sqrt((4*t+r^2)/3);
fun = @(k,u,c,a) ((k.^2).*exp(-1.5*k.^2)).*((u.^2).*(1-u.^2).*exp(-(b.*u).^2).*(cos(s.*k.*u.*cos(a)/L))).*(((cos(c)).^2).*(cos(k.*sqrt(1-u.^2).*(s.*sin(a).*cos(th).*cos(c)+s.*sin(a).*sin(th).*sin(c))/(L))));
f3 = arrayfun(@(a)integral3(@(k,u,c)fun(k,u,c,a),0,Inf,-1,1,0,2*pi),a);
B = ((6*sqrt(6)*(b^3))/(erf(b)*(pi^2)))*(1-(3/(2*b^2))*(1-((2*b*exp(-b^2))/(erf(b)*sqrt(pi)))))^(-1);
R = B*f3;
figure(3)
polar(a,R);
This is how it look in Cartesian coordinates (theta in radians), but it should look much better in polar3D.
2 Kommentare
Dyuman Joshi
am 2 Jun. 2023
Bearbeitet: Dyuman Joshi
am 2 Jun. 2023
Your code does not seem to be working here.
Note that there is no inbuilt command/function in MATLAB that produces a 3D polar plot.
As a workaround, you can convert polar to cartesian via pol2cart and use surf. However, if you need the plot in Polar 3D, check out this FileEx submission 3D Polar Plot
s = 3;
n = 1;
r = 1;
t = 0.1;
th = 0:10:360; % angle theta
a = 0:1:360; % angle alpha
b = sqrt(2*n*t);
L = sqrt((4*t+r^2)/3);
fun = @(k,u,c,a) ((k.^2).*exp(-1.5*k.^2)).*((u.^2).*(1-u.^2).*exp(-(b.*u).^2).*(cos(s.*k.*u.*cos(a)/L))).*(((cos(c)).^2).*(cos(k.*sqrt(1-u.^2).*(s.*sin(a).*cos(th).*cos(c)+s.*sin(a).*sin(th).*sin(c))/(L))));
f3 = arrayfun(@(a)integral3(@(k,u,c)fun(k,u,c,a),0,Inf,-1,1,0,2*pi),a);
B = ((6*sqrt(6)*(b^3))/(erf(b)*(pi^2)))*(1-(3/(2*b^2))*(1-((2*b*exp(-b^2))/(erf(b)*sqrt(pi)))))^(-1);
R = B*f3;
figure(3)
polar(a,R);
Akzeptierte Antwort
Star Strider
am 2 Jun. 2023
This takes too long to run here (it took 336.315050 seconds — 00:05:36.315049 — just now on MATLAB Online) however it plots the surface on a ‘synthetic’ polar coordinate axis in 3D. It would be relatively straightforward to change the Z axis coordinates (or ellimiinate them entirely). The original problem was that the code for the polar axes was not complete. It now works, as it worked in my earlier code.
Try this —
s = 3;
n = 1;
p = 0.1; % this is time
tv = 0:10:360; %3; % this is angle theta for polar rotation
r = 1;
a = 0:10:360;
a = deg2rad(a);
tv = deg2rad(tv);
tic
for k = 1:numel(tv)
t = tv(k)
b = sqrt(2*n*p);
L = sqrt((4*p+r^2)/3);
fun = @(k,u,c,a) ((k.^2).*exp(-1.5*k.^2)).*((u.^2).*(1-u.^2).*exp(-(b.*u).^2).*(cos(s.*k.*u.*cos(a)/L))).*(((cos(c)).^2).*(cos(k.*sqrt(1-u.^2).*(s.*sin(a).*cos(t).*cos(c)+s.*sin(a).*sin(t).*sin(c))/(L))));
f3 = arrayfun(@(a)integral3(@(k,u,c)fun(k,u,c,a),0,Inf,-1,1,0,2*pi),a);
B = ((6*sqrt(6)*(b^3))/(erf(b)*(pi^2)))*(1-(3/(2*b^2))*(1-((2*b*exp(-b^2))/(erf(b)*sqrt(pi)))))^(-1);
R = B*f3;
ta = t*ones(size(tv));
[x,y,z] = pol2cart(a, R, ta);
X(k,:) = x;
Y(k,:) = y;
Z(k,:) = z;
toc % Total Time To This Point
LIT = toc/k % Mean Loop Iteration Time
end
toc
figure (2)
surfc(X, Y, Z)
colormap(turbo)
axis('equal')
axis('off')
hold on
a = deg2rad(0:2:360); % Create & Plot Polar Cylindrical Coordinates
r = 1;
xc = [0:0.25*r:r].'*cos(a);
yc = [0:0.25*r:r].'*sin(a);
xr = [0;r]*cos(0:pi/4:2*pi);
yr = [0;r]*sin(0:pi/4:2*pi);
plot3(xc.', yc.', zeros(size(xc)), '-k')
plot3(xr, yr, zeros(size(xr)), '-k')
zt = (0:1:max(tv)).';
zt1 = ones(size(zt));
surf(zt1*xc(end,:), zt1*yc(end,:), zt*ones(size(a)), 'FaceAlpha',0, 'MeshStyle','row')
hold off
text(xr(2,1:end-1)*1.1,yr(2,1:end-1)*1.1, zeros(1,size(xr,2)-1), compose('%3d°',(0:45:315)), 'Horiz','center','Vert','middle')
text(ones(size(zt))*xc(end,end-10), ones(size(zt))*yc(end,end-10), zt, compose('%.1f',zt))
toc
TTmin = toc/60
.
24 Kommentare
Weitere Antworten (0)
Siehe auch
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!