- fixing the beta0 problem you asked about
- creating separate tables for each fit
- storing the resulting models in a cell array
Fit nonlinear regression model
11 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hidd_1
am 19 Mai 2023
Kommentiert: Hidd_1
am 19 Mai 2023
I am trying the fit the eclosed data,
for the X-Axis:
x = 0:1:248;
I enclosed the data for the Y-axis. (Each row is a curve, there are 5 row = 5 curves)
with the following objective function:
here is my code:
DF = load('Inter_cubic.mat');
Data = DF.Inter_cubic(:,1:230);
Data1 = array2table(Data);
x = 1:size(Data,2);
Sig = @(p,x) p(4)./(1 + exp(-p(1).*x + p(7))) + p(5)./(1 + exp(-p(2).*x + p(8))) + p(6)./(1 + exp(-p(3).*x + p(9))) + p(10);
beta0 = [Data(1,1) Data(2,1) Data(3,1) Data(4,1) Data(5,1)];
for k = 1:size(Data1,1)
mdl(1,:) = fitnlm(Data1(k,:),Sig,beta0(1,k));
end
I am getting error message regarding using the function "fitnlm", and regarding the initial value beta0 are they the intial values of the data?
0 Kommentare
Akzeptierte Antwort
the cyclist
am 19 Mai 2023
Answering your main question: beta0 is the initial guess at the coefficients of the fit. In your case, MATLAB is expecting a vector of length 10, because you have 10 parameters to fit.
There are lots of problems with both your MATLAB syntax, and how you are trying to fit your curves. In the code below, I have fixed the syntax problems, by
But, I did not try to fix the equation you are trying to fit to.
load Data
x = (1:size(Data,2))';
% Define the fitting function
Sig = @(p,x) p(4)./(1 + exp(-p(1).*x + p(7))) + p(5)./(1 + exp(-p(2).*x + p(8))) + p(6)./(1 + exp(-p(3).*x + p(9))) + p(10);
% Initial guess of coefficients
beta0 = ones(1,10);
for k = 1:size(Data,1)
% Put the data for this curve into a table
y = Data(k,:)';
tbl = table(x,y);
% Fit the model
mdl{k} = fitnlm(tbl,Sig,beta0);
% Plot the fit against the data
figure
hold on
plot(x,Data(k,:),'o')
plot(x,predict(mdl{k},x))
end
5 Kommentare
the cyclist
am 19 Mai 2023
I think a simplified model can still do a pretty good fit, if you choose better initial guesses. And you may need different initial guesses for each curve. For example, looking only at the 5th set of data ...
load Data
x = (1:size(Data,2))';
% Define the fitting function
% Sig = @(p,x) p(4)./(1 + exp(-p(1).*x + p(7))) + p(5)./(1 + exp(-p(2).*x + p(8))) + p(6)./(1 + exp(-p(3).*x + p(9))) + p(10);
Sig = @(p,x) p(2)./(1 + exp(-p(1).*x + p(3))) + p(4); % <----- I used only one non-linear function here, not all three
% Initial guess of coefficients
beta0 = [0.01 1 0 19] % <------- I changed these
for k = 5 % <------- I am ONLY looking at 5th curve
% Put the data for this curve into a table
y = Data(k,:)';
tbl = table(x,y);
% Fit the model
mdl{k} = fitnlm(tbl,Sig,beta0);
% Plot the fit against the data
figure
hold on
plot(x,Data(k,:),'o')
plot(x,predict(mdl{k},x))
end
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Nonlinear Regression finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!