Input data must be a formatted dlarray.
75 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Shilpa Sonawane
am 21 Feb. 2023
Kommentiert: Shilpa Sonawane
am 24 Feb. 2023
I have used the code of VAE to generate image. My aim is to find probaility distribution of mfcc signal. Input is MFCC matrix of size 40x24. I got the error:Input data must be a formatted dlarray.
plz provide guidance to resolve the above error.
clear all;
close all;
clc;
folder='D:\SAS WORK\CODING\MY_WORK_572021\datastore';
ADS = audioDatastore(folder);
load S1_0_02_tr_mfcc.mat;
load S1_1_02_tr_mfcc.mat;
XTrain=S1_0_02_mfcc;
XTest=S1_1_02_mfcc((1:40),:);
inputSize=[40 24];
numLatentChannels = 16;
imageSize = [40 24 1];
layersE = [
imageInputLayer(imageSize,Normalization="none")
convolution2dLayer(3,32,Padding="same",Stride=2)
reluLayer
convolution2dLayer(3,64,Padding="same",Stride=2)
reluLayer
fullyConnectedLayer(2*numLatentChannels)
samplingLayer];
projectionSize = [7 7 64];
numInputChannels = size(imageSize,1);
layersD = [
featureInputLayer(numLatentChannels)
projectAndReshapeLayer(projectionSize)
transposedConv2dLayer(3,64,Cropping="same",Stride=2)
reluLayer
transposedConv2dLayer(3,32,Cropping="same",Stride=2)
reluLayer
transposedConv2dLayer(3,numInputChannels,Cropping="same")
sigmoidLayer];
netE = dlnetwork(layersE);
netD = dlnetwork(layersD);
numEpochs = 30;
miniBatchSize = 128;
learnRate = 1e-3;
trailingAvgE = [];
trailingAvgSqE = [];
trailingAvgD = [];
trailingAvgSqD = [];
numObservationsTrain = 2;%size(XTrain,4);
numIterationsPerEpoch = ceil(numObservationsTrain / miniBatchSize);
numIterations = numEpochs * numIterationsPerEpoch;
monitor = trainingProgressMonitor( ...
Metrics="Loss", ...
Info="Epoch", ...
XLabel="Iteration");
epoch = 0;
iteration = 0;
% Loop over epochs.
while epoch < numEpochs %&& ~monitor.Stop
epoch = epoch + 1;
% Shuffle data.
%shuffle(mbq);
% Loop over mini-batches.
while (iteration<=size(XTrain,1))%hasdata(mbq) && ~monitor.Stop
iteration = iteration + 1;
% Read mini-batch of data.
X = XTrain(iteration,:)%next(mbq);
% Evaluate loss and gradients.
[loss,gradientsE,gradientsD] = dlfeval(@modelLoss,netE,netD,X);
% Update learnable parameters.
[netE,trailingAvgE,trailingAvgSqE] = adamupdate(netE, ...
gradientsE,trailingAvgE,trailingAvgSqE,iteration,learnRate);
[netD, trailingAvgD, trailingAvgSqD] = adamupdate(netD, ...
gradientsD,trailingAvgD,trailingAvgSqD,iteration,learnRate);
% Update the training progress monitor.
recordMetrics(monitor,iteration,Loss=loss);
updateInfo(monitor,Epoch=epoch + " of " + numEpochs);
monitor.Progress = 100*iteration/numIterations;
end
end
_____________________
Error
Error using dlnetwork/validateForwardInputs
Input data must be a formatted dlarray.
Error in dlnetwork/forward (line 761)
[x, doForwardExampleInputs] = validateForwardInputs(net, x, "forward");
Error in modelLoss (line 4)
[Z,mu,logSigmaSq] = forward(netE,X);
Error in deep.internal.dlfeval (line 17)
[varargout{1:nargout}] = fun(x{:});
Error in dlfeval (line 40)
[varargout{1:nargout}] = deep.internal.dlfeval(fun,varargin{:});
Error in SS_19_FEB_2023_datastore (line 77)
[loss,gradientsE,gradientsD] = dlfeval(@modelLoss,netE,netD,X);
0 Kommentare
Akzeptierte Antwort
Matt J
am 22 Feb. 2023
Bearbeitet: Matt J
am 22 Feb. 2023
You have not provided us the means to run your code (implementation of modelLoss is missing as is a sample of the input data). However, my guess is that your modelLoss function tries to evaluate dlgradient which requires its inputs to be of type dlarray, whereas X is an ordinary Matlab numeric array.
5 Kommentare
Matt J
am 23 Feb. 2023
Well, we cannot troubleshoot something we can't see, and we cannot see what you did. I repeat my advice that you add sufficient material to your post to allow us to run your code.
Weitere Antworten (1)
Brian Hemmat
am 23 Feb. 2023
As Matt J said, the mfcc function, and all feature extraction functions provided by Audio Toolbox, doesn't support dlarrays as of R2023a.
You can find an example implementation of a log mel spectrogram used in a loss function here:
Below is example code of mfcc feature extraction in a loss function. The mfcc extraction is in the supporting functions. I've couched it within a trivial example of denoising to minimize the loss between mfcc derived from clean and mfcc derived from noisy speech.
% This example was created with R2022b and requires Audio Toolbox(TM) and Deep Learning Toolbox(TM)
%% Ingest the Free Spoken Digit Dataset
loc = matlab.internal.examples.downloadSupportFile("audio","FSDD.zip");
unzip(loc,pwd)
ads = audioDatastore(pwd,IncludeSubfolders=true);
fs = 8e3; % sample rate of all files in dataset
% Split datastore into train and validation sets
train_idx = 1:round(numel(ads.Files)*0.8);
val_idx = round(numel(ads.Files)*0.8)+1:numel(ads.Files);
adsValidation = subset(ads,val_idx);
adsTrain = subset(ads,train_idx);
% Create combined datastores where the target is the clean signal and the
% predictor is the signal with added noise.
xadsTrain = transform(adsTrain,@(x)irescale(x+pinknoise(size(x))));
adsTrain = transform(adsTrain,@(x){irescale(x)});
cdsTrain = combine(xadsTrain,adsTrain);
xadsValidation = transform(adsValidation,@(x)irescale(x+pinknoise(size(x))));
adsValidation = transform(adsValidation,@(x){irescale(x)});
cdsValidation = combine(xadsValidation,adsValidation);
% Create minibatchqueue objects to create mini-batches of data and speed up
% training.
miniBatchSize = 128;
mbq = minibatchqueue(cdsTrain,...
MiniBatchSize=miniBatchSize, ...
MiniBatchFcn=@(x,t)preprocessMiniBatch(x,t), ...
MiniBatchFormat=["TCB","TCB"]);
mbqValidation = minibatchqueue(cdsValidation,...
MiniBatchSize=miniBatchSize, ...
MiniBatchFcn=@(x,t)preprocessMiniBatch(x,t), ...
MiniBatchFormat=["TCB","TCB"], ...
PartialMiniBatch="discard");
%% Verify dlmfcc implementation
% Use melSpectrogram followed by cepstralCoefficients. This is the same
% implementation that audioFeatureExtractor uses.
x = read(ads);
x = single(x);
S = melSpectrogram(x,fs,WindowNormalization=false);
exp = cepstralCoefficients(S);
% The extra permutes are necessary because dlmfcc expects input that has
% been moved into CBT order.
act = permute(extractdata(dlmfcc(dlarray(permute(x,[2,3,1])),fs)),[3,1,2]);
% Inspect the difference
norm(exp-act)
%% Define network
% Define network. This is basically a hello-world network, randomly made.
layers = [
sequenceInputLayer(1,MinLength=1e3)
bilstmLayer(32,OutputMode="sequence")
convolution1dLayer(5,1,Padding="same")
];
net = dlnetwork(layers);
analyzeNetwork(net)
%% Define Training Options
% Define training parameters and initialize variables
maxEpochs = 20;
iteration = 0;
averageGrad = [];
averageSqGrad = [];
learnRate = 0.001;
%% Train Network
% Create a progress monitor to visualize training
monitor = trainingProgressMonitor( ...
Metrics=["TrainingLoss","ValidationLoss"], ...
Info="Epoch");
groupSubPlot(monitor,"loss",["TrainingLoss","ValidationLoss"])
% Main training loop
for epoch = 1:maxEpochs
% Update plot info
updateInfo(monitor,Epoch=epoch)
% Shuffle dataset each epoch
shuffle(mbq)
while hasdata(mbq)
iteration = iteration + 1;
% Get next mini batch
[X,T] = next(mbq);
% Pass the predictors through the network and return the loss and
% gradients.
[loss,gradients] = dlfeval(@modelLoss,net,X,T);
% Update the network parameters using the ADAM optimizer.
[net,averageGrad,averageSqGrad] = adamupdate(net,gradients, ...
averageGrad,averageSqGrad,iteration,learnRate);
% Update training progress visualization
loss = gather(extractdata(loss));
recordMetrics(monitor,iteration,TrainingLoss=loss)
if monitor.Stop
break
end
end
if monitor.Stop
break
end
% Update validation progress visualization
shuffle(mbqValidation)
totalLoss = [];
while hasdata(mbqValidation)
[X,T] = next(mbqValidation);
Y = predict(net,X);
% Compute loss
Y = stripdims(Y);
T = stripdims(T);
Ym = dlmfcc(Y,fs);
Tm = dlmfcc(T,fs);
loss = mse(Ym,Tm)./(size(Tm,1)*size(Tm,3));
totalLoss = [totalLoss;loss]; %#ok<AGROW>
end
validationLoss = mean(totalLoss);
recordMetrics(monitor,iteration,ValidationLoss=validationLoss)
end
%% Supporting Functions
function [loss,gradients] = modelLoss(net,X,T)
% Forward through network
Y = forward(net,X);
% Compute loss
Ym = dlmfcc(Y,8e3);
Tm = dlmfcc(T,8e3);
loss = mse(Ym,Tm)./(size(Tm,1)*size(Tm,3));
% Compute gradients
gradients = dlgradient(loss,net.Learnables);
end
function z = dlmfcc(x,fs,options)
arguments
x
fs
options.Window = hamming(round(0.03*fs),"periodic")
options.OverlapLength = round(0.02*fs)
options.NumCoeffs = 13
options.NumBands = 32
end
x = stripdims(x);
dctmatrix = createDCTmatrix(options.NumCoeffs,options.NumBands);
M = dlmelspectrogram(x,fs, ...
Window=options.Window, ...
OverlapLength=options.OverlapLength, ...
NumBands=options.NumBands);
% Apply log10
M = log(M+eps)/log(10);
y = pagemtimes(dctmatrix,M);
y = reshape(y,size(y,1),size(y,3),size(y,4));
z = dlarray(y,"CBT");
end
function [x,t] = preprocessMiniBatch(xcell,tcell)
x = padsequences(xcell,1,Length="shortest");
t = padsequences(tcell,1,Length="shortest");
end
function y = dlmelspectrogram(x,fs,options)
%dlmelspectrogram Mel spectrogram compatible with dlarray
% y = dlmelspectrogram(x,fs) computes a mel spectrogram from the audio
% input.
arguments
x
fs
options.Window = hamming(round(0.03*fs),"periodic")
options.OverlapLength = round(0.02*fs)
options.NumBands = 32
options.SpectrumType {mustBeMember(options.SpectrumType,{'power','magnitude'})} = 'power'
end
filterBank = designAuditoryFilterBank(fs, ...
FFTLength=numel(options.Window), ...
NumBands=32); % NumBands-by-FFTLength
% Short-time Fourier transform
[yr,yi] = dlstft(x, ...
DataFormat="CBT", ...
Window=options.Window, ...
OverlapLength=options.OverlapLength);
% Power spectrum
y = abs(yr).^2 + abs(yi).^2; % FFTLength-by-1-by-BatchSize-by-NumHops
% Apply filter bank
y = pagemtimes(filterBank,y); % NumBands-by-1-by-BatchSize-by-NumHops
end
function matrix = createDCTmatrix(NumCoeffs,NumFilters)
N = NumCoeffs;
K = NumFilters;
matrix = zeros(N,NumFilters,'single');
A = sqrt(1/K);
B = sqrt(2/K);
C = 2*K;
piCCast = single(2*pi/C);
matrix(1,:) = A;
for k = 1:K
for n = 2:N
matrix(n,k) = B*cos(piCCast*(n-1)*(k-0.5));
end
end
end
function y = irescale(x)
y = x./max(abs(x(:)));
end
Siehe auch
Kategorien
Mehr zu Custom Training Loops finden Sie in Help Center und File Exchange
Produkte
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!