I am facing error while solving two 2nd order differential equation in which boundary condition are dependent to each other. Any idea where I am doing wrong??
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Amit kumar
am 17 Feb. 2023
Kommentiert: Amit kumar
am 21 Feb. 2023
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1298490/image.png)
clc
clear all;
close all;
syms psi_1(z)
syms psi_2(z)
K1=1
K2=1
K3=1
Dpsi_1 = diff(psi_1);
Dpsi_2 = diff(psi_2);
%%%%%%%%%% Differential equations %%%%%%%%%%%%%
ode1=diff(psi_1,z,2)-psi_1/K1==K2
ode2 = diff(psi_2,z,2)==K3
%%%%%%%%%% initial conditions %%%%%%%%
cond1 = psi_1(0) == 0;
cond2=psi_1(1)==psi_2(1)
cond3 = Dpsi_1(1) == Dpsi_2(1);
cond4=psi_2(2) == 0.5;
conds_1 = [cond1 cond2];
conds_2 = [cond3 cond4];
psi_1Sol(z) = dsolve(ode1,conds_1)
psi_2Sol(z) = dsolve(ode2,conds_2)
0 Kommentare
Akzeptierte Antwort
Oguz Kaan Hancioglu
am 17 Feb. 2023
Since boundary conditions are related to each variable, solving all odes in one dsolve command may solve your problem.
[psi_1Sol(z), psi_2Sol(z)] = dsolve(ode1,ode2,conds_1,conds_2)
Weitere Antworten (1)
Torsten
am 17 Feb. 2023
Bearbeitet: Torsten
am 17 Feb. 2023
syms y1(z) y2(z) z C11 C12 C21 C22
K1 = 1;
K2 = 1;
K3 = 1;
eqn1 = diff(y1,z,2) - y1/K1 == K2;
eqn2 = diff(y2,z,2) == K3;
sol1 = dsolve(eqn1);
var1 = symvar(sol1);
sol1 = subs(sol1,[var1(1),var1(2)],[C11 C12]);
sol2 = dsolve(eqn2);
var2 = symvar(sol2);
sol2 = subs(sol2,[var2(1) var2(2)],[C21 C22]);
eqn1_alg = subs(sol1,z,0)==0;
eqn2_alg = subs(diff(sol1,z),z,1)==subs(diff(sol2,z),z,1);
eqn3_alg = subs(sol1,z,1)==subs(sol2,z,1);
eqn4_alg = subs(sol2,z,2)==0.5;
sol_alg = solve([eqn1_alg,eqn2_alg,eqn3_alg,eqn4_alg],[C11 C12 C21 C22]);
sol1 = subs(sol1,[C11 C12],[sol_alg.C11 sol_alg.C12]);
sol2 = subs(sol2,[C21 C22],[sol_alg.C21 sol_alg.C22]);
figure(1)
hold on
fplot(sol1,[0 1])
fplot(sol2,[1 2])
hold off
grid on
@Oguz Kaan Hancioglu suggestion works, too:
syms psi_1(z)
syms psi_2(z)
K1=1;
K2=1;
K3=1;
Dpsi_1 = diff(psi_1);
Dpsi_2 = diff(psi_2);
%%%%%%%%%% Differential equations %%%%%%%%%%%%%
ode1=diff(psi_1,z,2)-psi_1/K1==K2;
ode2 = diff(psi_2,z,2)==K3;
%%%%%%%%%% initial conditions %%%%%%%%
cond1 = psi_1(0) == 0;
cond2=psi_1(1)==psi_2(1);
cond3 = Dpsi_1(1) == Dpsi_2(1);
cond4=psi_2(2) == 0.5;
conds_1 = [cond1 cond2];
conds_2 = [cond3 cond4];
[psi_1Sol(z), psi_2Sol(z)] = dsolve(ode1,ode2,conds_1,conds_2);
figure(2)
hold on
fplot(psi_1Sol,[0 1])
fplot(psi_2Sol,[1 2])
hold off
grid on
Siehe auch
Kategorien
Mehr zu Symbolic Math Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!