Wrong start of the curve in double integral

2 Ansichten (letzte 30 Tage)
Hexe
Hexe am 29 Jan. 2023
Kommentiert: Hexe am 29 Jan. 2023
Hi! I solve the double integral and it shows a right behavior of the curve, but it starts from different points at different parameters. But it should always start from the point (0,1). What is wrong?
n = 0.1 ;
t = 1;
r = 1;
s = 0:0.01:1;
b=sqrt(2*t)/r;
fun = @(x,z,k) exp(-2.*n.*t.*x.^2).*exp(-z.^2).*(erf(((z+x.*k./r)./(2.*b)))+erf(((z-x.*k./r)./(2.*b)))-z./(sqrt(pi).*b).*(exp(-((z+x.*k./r)./(2.*b)).^2)+exp(-((z-x.*k./r)./(2.*b)).^2)));
f3 = arrayfun(@(k)integral2(@(x,z)fun(x,z,k),0,Inf,0,1),s);
Cor = ((sqrt(2*n*t))/(erf(sqrt(2*n*t))*(atan(1/(2*b))-(b/(2*(b^2+0.25))))))*f3;
plot(s,Cor,'b-')

Akzeptierte Antwort

C B
C B am 29 Jan. 2023
n = 0.1 ;
t = 1;
r = 1;
s = 0:0.01:1;
b=sqrt(2*t)/r;
fun = @(x,z,k) exp(-2.*n.*t.*x.^2).*exp(-z.^2).*(erf(((z+x.*k./r)./(2.*b)))+erf(((z-x.*k./r)./(2.*b)))-z./(sqrt(pi).*b).*(exp(-((z+x.*k./r)./(2.*b)).^2)+exp(-((z-x.*k./r)./(2.*b)).^2)));
f3 = arrayfun(@(k)integral2(@(x,z)fun(x,z,k),0,Inf,0,1),s);
Cor = ((sqrt(2*n*t))/(erf(sqrt(2*n*t))*(atan(1/(2*b))-(b/(2*(b^2+0.25))))))*f3;
plot(s,Cor,'b-')
n = 0.1 ;
t = 1;
r = 1;
s = 0:0.01:1;
b=sqrt(2*t)/r;
fun = @(x,z,k) exp(-2.*n.*t.*x.^2).*exp(-z.^2).*(erf(((z+x.*k./r)./(2.*b)))+erf(((z-x.*k./r)./(2.*b)))-z./(sqrt(pi).*b).*(exp(-((z+x.*k./r)./(2.*b)).^2)+exp(-((z-x.*k./r)./(2.*b)).^2)));
f3 = arrayfun(@(k)integral2(@(x,z)fun(x,z,k),0,1,0,1),s);
Cor = ((sqrt(2*n*t))/(erf(sqrt(2*n*t))*(atan(1/(2*b))-(b/(2*(b^2+0.25))))))*f3;
Cor = Cor + (1 - Cor(1));
plot(s,Cor,'b-')
  1 Kommentar
Hexe
Hexe am 29 Jan. 2023
Dear Chetan Bhavsar!
Thank you very much. Now it works as it should.
Sincerely
Olha.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by