Sound absorption coefficient of membrane backed with air cavity
1 Ansicht (letzte 30 Tage)
Ältere Kommentare anzeigen
Akzeptierte Antwort
VBBV
am 17 Jan. 2023
Bearbeitet: VBBV
am 17 Jan. 2023
clc
clear all;
f= (100:2:1600);
omega= 2*pi*f;
rho_s=0.265;
T=76.53*(1+1j*0.005);
D=0.1;
a=0.05; % Fig 2 a
c=343;
rho_0=1.213;
Z_0 = rho_0*c;
k0=omega/c;
km=omega.*sqrt(rho_s/T);
%% Impedance of membrane with air cavity only
% Z_m = (1j*omega*rho_s)./(1-((2./km*a).*(besselj(1, km*a)./besselj(0,km*a))));
Z_m = (1j*omega*rho_s)./(((besselj(0, km*a)./besselj(2,km*a))));
Z_w = -1j*Z_0*cot(k0*D);
Z_s = Z_m + Z_w;
Z_s = Z_s/Z_0;
R = (Z_s - 1)./(Z_s + 1);
alpha_1 = 1 - ((abs(R)).^2);
figure(1)
set(gca,'FontSize',16)
plot(f,alpha_1); % check using semilogx
%xticklabels(xL)
xlabel('Frequency (Hz)')
ylabel('Sound absorption coefficient')
grid on
grid minor
ylim([0 1])
set(gca, 'XScale', 'log')
The plot was drawn using the below equation
Z_m = (1j*omega*rho_s)./(((besselj(0, km*a)./besselj(2,km*a)))); % Eq (3) where he writes as it
% can also be written as,
and not with equation you used. Convert the log representation of xlabels using xticklabels
3 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Partial Differential Equation Toolbox finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!