How to plot an oscillator?

7 Ansichten (letzte 30 Tage)
Haya Ali
Haya Ali am 12 Jan. 2023
Kommentiert: Haya Ali am 12 Jan. 2023
I want to plot the equations given below. Which is generally of an 3 coupled oscillators. Can anyone please tell me if I am plotting it correctly or not? Below is my code
close all; clear all; clc;
%value of constants
a1=0.2;a2=0.3;a3=0.3;
omega1=5;omega2=4;omega3=5;
G=1;C12=0.01;C13=0.02;C21=0.03;C23=0.04;C31=0.05;C32=0.06;
dt=0.01; %step size
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x1(1)=0.5;
y1(1)=0.5;
x2(1)=0.5;
y2(1)=0.5;
x3(1)=0.5;
y3(1)=0.5;
for i=2:1000
%Oscillator 1
x1(i) = x1(i-1) + ( a1*x1(i-1) - omega1*y1(i-1) + G*C12*( x2(i-1) - x1(i-1) ) + G*C13*( x3(i-1) - x1(i-1) ) )*dt;
y1(i) = y1(i-1) + ( a1*y1(i-1) + omega1*x1(i-1) + G*C12*( y2(i-1) - y1(i-1) ) + G*C13*( y3(i-1) - y1(i-1) ) )*dt;
%Oscillator 2
x2(i) = x2(i-1) + ( a2*x2(i-1) - omega2*y2(i-1) + G*C21*( x1(i-1) - x2(i-1) ) + G*C23*( x3(i-1) - x2(i-1) ) )*dt;
y2(i) = y2(i-1) + ( a2*y2(i-1) + omega2*x2(i-1) + G*C21*( y1(i-1) - y2(i-1) ) + G*C23*( y3(i-1) - y2(i-1) ) )*dt;
%Oscillator 3
x3(i) = x3(i-1) + ( a3*x3(i-1) - omega3*y3(i-1) + G*C31*( x1(i-1) - x3(i-1) ) + G*C32*( x2(i-1) - x3(i-1) ) )*dt;
y3(i) = y3(i-1) + ( a3*y3(i-1) + omega3*x3(i-1) + G*C31*( y1(i-1) - y3(i-1) ) + G*C32*( y2(i-1) - y3(i-1) ) )*dt;
end
plot (x1)
hold on
plot (x2)
plot (x3)

Akzeptierte Antwort

Stephan
Stephan am 12 Jan. 2023
You can plot it 2 ways - i dont know what is "correct" for your case... For me both are correct - depending on what you want to see:
%value of constants
a1=0.2;a2=0.3;a3=0.3;
omega1=5;omega2=4;omega3=5;
G=1;C12=0.01;C13=0.02;C21=0.03;C23=0.04;C31=0.05;C32=0.06;
dt=0.01; %step size
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
x1(1)=0.5;
y1(1)=0.5;
x2(1)=0.5;
y2(1)=0.5;
x3(1)=0.5;
y3(1)=0.5;
for i=2:1000
%Oscillator 1
x1(i) = x1(i-1) + ( a1*x1(i-1) - omega1*y1(i-1) + G*C12*( x2(i-1) - x1(i-1) ) + G*C13*( x3(i-1) - x1(i-1) ) )*dt;
y1(i) = y1(i-1) + ( a1*y1(i-1) + omega1*x1(i-1) + G*C12*( y2(i-1) - y1(i-1) ) + G*C13*( y3(i-1) - y1(i-1) ) )*dt;
%Oscillator 2
x2(i) = x2(i-1) + ( a2*x2(i-1) - omega2*y2(i-1) + G*C21*( x1(i-1) - x2(i-1) ) + G*C23*( x3(i-1) - x2(i-1) ) )*dt;
y2(i) = y2(i-1) + ( a2*y2(i-1) + omega2*x2(i-1) + G*C21*( y1(i-1) - y2(i-1) ) + G*C23*( y3(i-1) - y2(i-1) ) )*dt;
%Oscillator 3
x3(i) = x3(i-1) + ( a3*x3(i-1) - omega3*y3(i-1) + G*C31*( x1(i-1) - x3(i-1) ) + G*C32*( x2(i-1) - x3(i-1) ) )*dt;
y3(i) = y3(i-1) + ( a3*y3(i-1) + omega3*x3(i-1) + G*C31*( y1(i-1) - y3(i-1) ) + G*C32*( y2(i-1) - y3(i-1) ) )*dt;
end
figure(1)
plot (x1)
hold on
plot (x2)
plot (x3)
figure(2)
plot (x1,y1)
hold on
plot (x2,y2)
plot (x3,y3)

Weitere Antworten (0)

Kategorien

Mehr zu Line Plots finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by