how to increase 'MaxFunEvals'

8 Ansichten (letzte 30 Tage)
柊介 小山内
柊介 小山内 am 19 Dez. 2022
Kommentiert: Torsten am 19 Dez. 2022
I want to increase 'maxFunEvals' in my program, but it doesn't work. What is the problem of my program?
clear all;
a = 0.2; %field loss coefficient α[db/km]
alfa = a*log(20)/20;
gamma = 1.3; % fiber non-linearity coefficient 
Ns = 20; %number of span
Ls = 100; %span length[km]
beta2 = 20.7; %dispersion coefficient[ps^2/km]
roll = 0.3; %roll-off of gwdm
%% formula of ρ
syms f f1 f2 real %f,f1,f2 is THz
Le = (1-exp(-2*alfa*Ls))/(2*alfa);
x1(f1,f2,f) = 1-exp(-2*alfa*Ls)*exp(4j*(pi^2)*(f1-f)*(f2-f)*beta2*Ls);%symfun
x2(f1,f2,f) = 2*alfa-(4j*(pi^2)*(f1-f)*(f2-f)*beta2);
p(f1,f2,f) = Le^(-2)*(abs(x1(f1,f2,f)/x2(f1,f2,f)))^2;
%% formula of Gwdm
syms t w k
T=1/(32e-3);
A = pi*t/T;
x(t)= (sin(A)/A)*(cos(roll*A)/(1-(2*roll*t/T)^2));
X(w) = simplify(fourier(rewrite(x(t),'exp'),t,w));
X(f) =X(2*sym(pi)*f);
X(f)= rewrite(abs(X(f)),'sqrt');
xfunc = matlabFunction(X(f));%@(f)
GWDM(f)= (symsum(xfunc(f+(50e-3)*k),k,-5,5)/((32/8.8)*T));
func = p*GWDM(f1)*GWDM(f2)*GWDM(f1+f2-f);
ft=matlabFunction(func);
%% formula of GNLI
pint = @(f)integral2(@(f1,f2)ft(f1,f2,f),-270.8e-3,270.8e-3,-270.8e-3,270.8e-3,'MaxFunEvals',20000);
NLI = @(f)(16/27).*Ns.^1.03.*gamma.^2.*Le.^2.*pint(f); % NLI
%f = -0.3:0.005:0.3;
%plot(f,arrayfun(@(f)NLI(f),f));
%hold on
%plot(f,GWDM(f));
%hold off
  5 Kommentare
柊介 小山内
柊介 小山内 am 19 Dez. 2022
Bearbeitet: 柊介 小山内 am 19 Dez. 2022
Sorry my program was wrong. if you fix formula of GNLI in my code as below, warning message 'you have reached the maxmum number of function evaluations(10000). the result didn't pass global error test.' will display. I think this warning can solve by increasing MaxFunEvals. but I can't increase the value.
pint = @(f)integral2(@(f1,f2)ft(f1,f2,f),-270.8e-3,270.8e-3,-270.8e-3,270.8e-3);
NLI = @(f)(16/27).*Ns.^1.03.*gamma.^2.*Le.^2.*pint(f); % NLI
NLI(0.165)
I tried to increase value as below, but didn't increase.
options = optimset('MaxFunEvals',20000);
pint =@(f)integral2(@(f1,f2)ft(f1,f2,f),-270.8e-3,270.8e-3,-270.8e-3,270.8e-3);
NLI = @(f)(16/27).*Ns.^1.03.*gamma.^2.*Le.^2.*pint(f); % NLI
fminsearch(NLI,0.165,options);
Torsten
Torsten am 19 Dez. 2022
I suggest you plot NLI for reasonable values of f to see how the function behaves.

Melden Sie sich an, um zu kommentieren.

Akzeptierte Antwort

Matt J
Matt J am 19 Dez. 2022
Bearbeitet: Matt J am 19 Dez. 2022
The problem is that integral2 does not support an option called 'MaxFunEvals'. You imagined somehow that it does.
  1 Kommentar
Matt J
Matt J am 19 Dez. 2022
Bearbeitet: Matt J am 19 Dez. 2022
pint = @(f)integral2(@(f1,f2)ft(f1,f2,f),-270.8e-3,270.8e-3,-270.8e-3,270.8e-3,...
'AbsTol',1e-7);
NLI = @(f)(16/27).*Ns.^1.03.*gamma.^2.*Le.^2.*pint(f); % NLI
NLI(0.165)
ans = 0.0037

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu 2-D and 3-D Plots finden Sie in Help Center und File Exchange

Produkte


Version

R2021a

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by