How to change the dimensions of the original dataset to get the same forecast value? LTSM ONNX
19 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
slevin Lee
am 18 Nov. 2022
Beantwortet: Sivylla Paraskevopoulou
am 18 Nov. 2022
I trained an LSTM model in matlab
The original data set is 56 * 3853
feature_dimension is 56
miniBatchSize = 50;
[net,YPred] = predictAndUpdateState(net,xtrain,'ExecutionEnvironment','cpu');
normal operation
then...
filename = "lstm.onnx";
exportONNXNetwork(net,filename)
save data.mat xtrain
in python...
import onnxruntime
onnx_model = onnxruntime.InferenceSession('lstm.onnx')
from scipy import io
mydata = io.loadmat('data.mat')
data=np.float32(mydata['xtrain'])
onnx_input = {onnx_model.get_inputs()[0].name: data}
outputs = onnx_model.run(None, onnx_input)
InvalidArgument: [ONNXRuntimeError] : 2 : INVALID_ARGUMENT : Invalid rank for input: input Got: 2 Expected: 3 Please fix either the inputs or the model.
How to change the dimensions of the original dataset to get the same forecast value? LTSM ONNX
thanks a lot !!!
0 Kommentare
Akzeptierte Antwort
Sivylla Paraskevopoulou
am 18 Nov. 2022
You should permute from the MATLAB ordering (CN) to the ONNX ordering (NC), where C is the number of features and N is the number of sequence observations. Permute the input data before saving them to data.mat.
xtrain = permute(xtrain,[2,1]);
For more information about dimension ordering for different deep learning platforms, see Input Dimension Ordering.
0 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!