How to solve multiple equation and get all value of the variable?
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
This is the code
syms p1 p2 p3 p4 p5 a
R =[1 2 3 1 2;4 5 1 2 6;7 1 2 1 2;1 4 3 2 2;1 5 4 3 2];
I =[1 0 0 0 0;0 1 0 0 0;0 0 1 0 0;0 0 0 1 0;0 0 0 0 1];
pi =[p1 p2 p3 p4 p5];
e =[1;1;1;1;1];
a=[p1 p2 p3 p4 p5]*(I-R)^(-1)*e
t=a - 1
z=solve(t,p1) %get p1
A_0=[2 1 1 2 4;1 2 2 1 1;2 2 1 1 3;1 3 6 2 2;1 3 4 1 2];
B =[1 3 2 1 2;2 1 2 7 1;1 2 1 2 3;1 4 2 1 2;2 3 1 2 2];
y=pi*(A_0+R*B)
j =subs(y,p1,z) %substitude p1 to 5 equations
[A,Z]=equationsToMatrix(j,pi)
sol=double(A)\double(Z)
After run, i get this warning and solutions
Warning: Matrix is singular to working precision.
> In tes_matlab_baru (line 30)
sol =
-Inf
1.4983
-0.6005
3.7351
-5.4810
What i want to get is all value of pi, how to get it?
0 Kommentare
Akzeptierte Antwort
Torsten
am 1 Nov. 2022
Bearbeitet: Torsten
am 1 Nov. 2022
p1 can be chosen arbitrarily since the corresponding column in the matrix A is zero.
(I set p1 = 1).
Note that sol does not satisfy A*sol = Z exactly since you have 5 equations for 4 unknowns (p1 does not count since it cannot influence the system).
syms p1 p2 p3 p4 p5 a
R =[1 2 3 1 2;4 5 1 2 6;7 1 2 1 2;1 4 3 2 2;1 5 4 3 2];
I =[1 0 0 0 0;0 1 0 0 0;0 0 1 0 0;0 0 0 1 0;0 0 0 0 1];
pi =[p1 p2 p3 p4 p5];
e =[1;1;1;1;1];
a=pi*(I-R)^(-1)*e
t=a - 1
z=solve(t,p1) %get p1
A_0=[2 1 1 2 4;1 2 2 1 1;2 2 1 1 3;1 3 6 2 2;1 3 4 1 2];
B =[1 3 2 1 2;2 1 2 7 1;1 2 1 2 3;1 4 2 1 2;2 3 1 2 2];
y=pi*(A_0+R*B)
j =subs(y,p1,z) %substitude p1 to 5 equations
[A,Z]=equationsToMatrix(j,pi)
sol = lsqlin(double(A),double(Z),[],[],[1 0 0 0 0],1)
double(A)*sol - double(Z)
2 Kommentare
Torsten
am 1 Nov. 2022
syms p1 p2 p3 p4 p5 a
R =[1 2 3 1 2;4 5 1 2 6;7 1 2 1 2;1 4 3 2 2;1 5 4 3 2];
I =[1 0 0 0 0;0 1 0 0 0;0 0 1 0 0;0 0 0 1 0;0 0 0 0 1];
pi =[p1 p2 p3 p4 p5];
e =[1;1;1;1;1];
a=pi*(I-R)^(-1)*e
t=a - 1
z=solve(t,p1) %get p1
A_0=[2 1 1 2 4;1 2 2 1 1;2 2 1 1 3;1 3 6 2 2;1 3 4 1 2];
B =[1 3 2 1 2;2 1 2 7 1;1 2 1 2 3;1 4 2 1 2;2 3 1 2 2];
y=pi*(A_0+R*B)
j =subs(y,p1,z) %substitude p1 to 5 equations
[A,Z]=equationsToMatrix(j,pi)
sol = lsqlin(double(A),double(Z),[],[],[1 1 1 1 1],1)
double(A)*sol - double(Z)
sum(sol)
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!