I gave the initial condition correctly still the program not working.
2 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
SAHIL SAHOO
am 11 Okt. 2022
Beantwortet: Walter Roberson
am 11 Okt. 2022
ti = 0;
tf = 70E-8;
tspan=[ti tf];
k = (0.62).*10^(-5);
% y0= [(10e-6)*rand(2,1); ((-3.14).*rand(1,1) + (3.14).*rand(1,1));
% (10e-6)*rand(2,1); ((-3.14).*rand(1,1) + (3.14).*rand(1,1));
% (10e-6)*rand(2,1); ((-3.14).*rand(1,1) + (3.14).*rand(1,1));
% (10e-6)*rand(2,1); ((-3.14).*rand(1,1) + (3.14).*rand(1,1));
% (10e-6)*rand(2,1); ((-3.14).*rand(1,1) + (3.14).*rand(1,1));
% ((-3.14).*rand(5,1) + (3.14).*rand(5,1))];
y0 = [ 0.00001; 0.00001; 0.00001; 0.00001; 0.00001;
0.00001; 0.00001; 0.00001; 0.00001; 0.00001; 2.5669; 2.0482; 2.0454; -0.7968; 0.2303];
yita_mn = [
0 1 0 0 1;
1 0 1 0 0;
0 1 0 1 0;
0 0 1 0 1;
1 0 0 1 0;
]*(k);
N = 5;
tp = 1E-12;
[T,Y]= ode45(@(t,y) rate_eq(t,y,yita_mn,N),tspan./tp,y0);
figure(1)
plot(T./t,(Y(:,16)),'linewidth',0.8);
hold on
for m = 16:20
plot(T./t,(Y(:,m)),'linewidth',0.8);
end
hold off
grid on
xlabel("time")
ylabel("phase difference")
set(gca,'fontname','times New Roman','fontsize',18,'linewidth',1.8);
function dy = rate_eq(t,y,yita_mn,N,o)
dy = zeros(4*N,1);
dGdt = zeros(N,1);
dAdt = zeros(N,1);
dOdt = zeros(N,1);
P = 0.5;
a = 1;
T = 2E3;
Gt = y(1:3:3*N-2);
At = y(2:3:3*N-1);
Ot = y(3:3:3*N-0);
k = (0.62).*10^(-5);
for i = 1:N
dGdt(i) = (P - Gt(i) - (1 + 2.*Gt(i)).*(At(i))^2)./T ;
dAdt(i) = (Gt(i).*(At(i)));
dOdt(i) = -a.*(Gt(i));
for j = 1:N
dAdt(i) = dAdt(i)+yita_mn(i,j).*(At(j))*sin(Ot(j)-Ot(i));
dOdt(i) = dOdt(i)+yita_mn(i,j).*((At(j)/At(i)))*cos(Ot(j)-Ot(i));
end
end
dy(1:3:3*N-2) = dGdt;
dy(2:3:3*N-1) = dAdt;
dy(3:3:3*N-0) = dOdt;
n1 = (1:5)';
n2 = circshift(n1,-1);
n16 = n1 + 15;
n17 = circshift(n16,-1);
n20 = circshift(n16,1);
j2 = 3*(1:5)-1;
j5 = circshift(j2,-1);
j8 = circshift(j2,-2);
j19 = circshift(j2,1);
dy(n16) = -a.*(Gt(n2)-Gt(n1)) + (k).*(y(j2)./y(j5)).*cos(y(n16)) - (k).*(y( j5)./y(j2)).*cos(y(n16)) + (k).*(y(j8)./y(j5)).*cos(y(n17)) - (k).*(y(j19)./y(j2)).*cos(y(n20));
end
0 Kommentare
Akzeptierte Antwort
Walter Roberson
am 11 Okt. 2022
y0 = [ 0.00001; 0.00001; 0.00001; 0.00001; 0.00001;
0.00001; 0.00001; 0.00001; 0.00001; 0.00001; 2.5669; 2.0482; 2.0454; -0.7968; 0.2303];
That is 15 initial values.
for m = 16:20
plot(T./t,(Y(:,m)),'linewidth',0.8);
end
But you are trying to plot assuming 20 results. The only way to get 20 results is to have 20 or more initial values.
0 Kommentare
Weitere Antworten (1)
Benjamin Thompson
am 11 Okt. 2022
circshift returns a vector of the same length as its input. So, j2, j5, j8, and j19 are vectors and not scalar values as the line having the failure seems to expect. You can use breakpoints in your script in MATLAB to investigate further and debug the problems.
0 Kommentare
Siehe auch
Kategorien
Mehr zu Ordinary Differential Equations finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!