Stopping the neural network by tr.gradient
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
In training an ANN using FITNET , I noticed , the tr.gradient gives a row matrice that the number of columns are the number of iterations , and the last column is the gradient reported on the train window
I tried doing :
for h=Hmin:dH:Hmax
j = j+1
net = fitnet(10);
net = init(net); % Improving Results since we use patternet we should use init
[ net tr y ] = train( net, x, t );
e = gsubtract(t,y);
performance = perform(net,t,y)
if tr.gradient(end) < 0.05
tr.stop
end
but it only stops the Validation test , not the actual training test , is there a way to do this ? and also when I retrain after a gradient like 0.503 and I get a smaller gradient , if from my outputs one is calculated not so precisely , the only thing happens is that , another output will be unprecise.
I have 8 inputs and 3 outputs
0 Kommentare
Akzeptierte Antwort
Ahmed
am 6 Mär. 2015
Maybe you are looking for the property “trainParam.min_grad”.
net = fitnet(10);
net.trainParam.min_grad % default 1e-7
net.trainParam.min_grad = 1e-5;
net.trainParam.min_grad % changed to 1e-5
7 Kommentare
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!