Stopping the neural network by tr.gradient

4 Ansichten (letzte 30 Tage)
farzad
farzad am 6 Mär. 2015
Kommentiert: Greg Heath am 15 Mär. 2015
In training an ANN using FITNET , I noticed , the tr.gradient gives a row matrice that the number of columns are the number of iterations , and the last column is the gradient reported on the train window
I tried doing :
for h=Hmin:dH:Hmax
j = j+1
net = fitnet(10);
net = init(net); % Improving Results since we use patternet we should use init
[ net tr y ] = train( net, x, t );
e = gsubtract(t,y);
performance = perform(net,t,y)
if tr.gradient(end) < 0.05
tr.stop
end
but it only stops the Validation test , not the actual training test , is there a way to do this ? and also when I retrain after a gradient like 0.503 and I get a smaller gradient , if from my outputs one is calculated not so precisely , the only thing happens is that , another output will be unprecise.
I have 8 inputs and 3 outputs

Akzeptierte Antwort

Ahmed
Ahmed am 6 Mär. 2015
Maybe you are looking for the property “trainParam.min_grad”.
net = fitnet(10);
net.trainParam.min_grad % default 1e-7
net.trainParam.min_grad = 1e-5;
net.trainParam.min_grad % changed to 1e-5
  7 Kommentare
farzad
farzad am 11 Mär. 2015
Thank you very much dear professor
I wish I could accept ,but it was a comment
Greg Heath
Greg Heath am 15 Mär. 2015
Not a problem.
Good Luck
Greg

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Sequence and Numeric Feature Data Workflows finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by