分類学習機アプリで学習させた結果の出力方法

2 Ansichten (letzte 30 Tage)
Yumi Iwakami
Yumi Iwakami am 22 Aug. 2022
Kommentiert: Yumi Iwakami am 22 Sep. 2022
分類学習機アプリで5交差検証法を使って学習させた結果を一覧出力しようとしています.
混同行列やモデルの出力は出来たのですが,どのデータの予測が正解でどのデータの予測が誤りだったのか検証したいと考えています.
イメージとしては,以下の様になるのが理想です.
被験者ID  分類ラベル  予測結果
  1    Positive   Positive
  2    Positive   Negative

Akzeptierte Antwort

Kojiro Saito
Kojiro Saito am 22 Sep. 2022
モデルをエクスポートした後に元データと予測結果からtableを作ればできるかと思います。
ドキュメントの例に含まれているフィッシャーのアヤメデータを使ってサンプルを書きます。
t = readtable('fisheriris.csv');
% ID列を追加
t.ID = (1:height(t))';
% 分類学習器を起動
% classificationLearner
% 学習させたモデルを「コンパクトモデルのエクスポート」でcompactTrainedModelという変数でワークスペースで保存
% ここではmatファイルに出力したものを読み込みます
load compactTrainedModel
yPred = compactTrainedModel.predictFcn(t);
resultTable = table(t.ID, t.Species, yPred, 'VariableNames', {'ID', '分類ラベル', '予測結果'});
disp(resultTable)
ID 分類ラベル 予測結果 ___ ______________ ______________ 1 {'setosa' } {'setosa' } 2 {'setosa' } {'setosa' } 3 {'setosa' } {'setosa' } 4 {'setosa' } {'setosa' } 5 {'setosa' } {'setosa' } 6 {'setosa' } {'setosa' } 7 {'setosa' } {'setosa' } 8 {'setosa' } {'setosa' } 9 {'setosa' } {'setosa' } 10 {'setosa' } {'setosa' } 11 {'setosa' } {'setosa' } 12 {'setosa' } {'setosa' } 13 {'setosa' } {'setosa' } 14 {'setosa' } {'setosa' } 15 {'setosa' } {'setosa' } 16 {'setosa' } {'setosa' } 17 {'setosa' } {'setosa' } 18 {'setosa' } {'setosa' } 19 {'setosa' } {'setosa' } 20 {'setosa' } {'setosa' } 21 {'setosa' } {'setosa' } 22 {'setosa' } {'setosa' } 23 {'setosa' } {'setosa' } 24 {'setosa' } {'setosa' } 25 {'setosa' } {'setosa' } 26 {'setosa' } {'setosa' } 27 {'setosa' } {'setosa' } 28 {'setosa' } {'setosa' } 29 {'setosa' } {'setosa' } 30 {'setosa' } {'setosa' } 31 {'setosa' } {'setosa' } 32 {'setosa' } {'setosa' } 33 {'setosa' } {'setosa' } 34 {'setosa' } {'setosa' } 35 {'setosa' } {'setosa' } 36 {'setosa' } {'setosa' } 37 {'setosa' } {'setosa' } 38 {'setosa' } {'setosa' } 39 {'setosa' } {'setosa' } 40 {'setosa' } {'setosa' } 41 {'setosa' } {'setosa' } 42 {'setosa' } {'setosa' } 43 {'setosa' } {'setosa' } 44 {'setosa' } {'setosa' } 45 {'setosa' } {'setosa' } 46 {'setosa' } {'setosa' } 47 {'setosa' } {'setosa' } 48 {'setosa' } {'setosa' } 49 {'setosa' } {'setosa' } 50 {'setosa' } {'setosa' } 51 {'versicolor'} {'versicolor'} 52 {'versicolor'} {'versicolor'} 53 {'versicolor'} {'versicolor'} 54 {'versicolor'} {'versicolor'} 55 {'versicolor'} {'versicolor'} 56 {'versicolor'} {'versicolor'} 57 {'versicolor'} {'versicolor'} 58 {'versicolor'} {'versicolor'} 59 {'versicolor'} {'versicolor'} 60 {'versicolor'} {'versicolor'} 61 {'versicolor'} {'versicolor'} 62 {'versicolor'} {'versicolor'} 63 {'versicolor'} {'versicolor'} 64 {'versicolor'} {'versicolor'} 65 {'versicolor'} {'versicolor'} 66 {'versicolor'} {'versicolor'} 67 {'versicolor'} {'versicolor'} 68 {'versicolor'} {'versicolor'} 69 {'versicolor'} {'versicolor'} 70 {'versicolor'} {'versicolor'} 71 {'versicolor'} {'virginica' } 72 {'versicolor'} {'versicolor'} 73 {'versicolor'} {'versicolor'} 74 {'versicolor'} {'versicolor'} 75 {'versicolor'} {'versicolor'} 76 {'versicolor'} {'versicolor'} 77 {'versicolor'} {'versicolor'} 78 {'versicolor'} {'virginica' } 79 {'versicolor'} {'versicolor'} 80 {'versicolor'} {'versicolor'} 81 {'versicolor'} {'versicolor'} 82 {'versicolor'} {'versicolor'} 83 {'versicolor'} {'versicolor'} 84 {'versicolor'} {'virginica' } 85 {'versicolor'} {'versicolor'} 86 {'versicolor'} {'versicolor'} 87 {'versicolor'} {'versicolor'} 88 {'versicolor'} {'versicolor'} 89 {'versicolor'} {'versicolor'} 90 {'versicolor'} {'versicolor'} 91 {'versicolor'} {'versicolor'} 92 {'versicolor'} {'versicolor'} 93 {'versicolor'} {'versicolor'} 94 {'versicolor'} {'versicolor'} 95 {'versicolor'} {'versicolor'} 96 {'versicolor'} {'versicolor'} 97 {'versicolor'} {'versicolor'} 98 {'versicolor'} {'versicolor'} 99 {'versicolor'} {'versicolor'} 100 {'versicolor'} {'versicolor'} 101 {'virginica' } {'virginica' } 102 {'virginica' } {'virginica' } 103 {'virginica' } {'virginica' } 104 {'virginica' } {'virginica' } 105 {'virginica' } {'virginica' } 106 {'virginica' } {'virginica' } 107 {'virginica' } {'virginica' } 108 {'virginica' } {'virginica' } 109 {'virginica' } {'virginica' } 110 {'virginica' } {'virginica' } 111 {'virginica' } {'virginica' } 112 {'virginica' } {'virginica' } 113 {'virginica' } {'virginica' } 114 {'virginica' } {'virginica' } 115 {'virginica' } {'virginica' } 116 {'virginica' } {'virginica' } 117 {'virginica' } {'virginica' } 118 {'virginica' } {'virginica' } 119 {'virginica' } {'virginica' } 120 {'virginica' } {'virginica' } 121 {'virginica' } {'virginica' } 122 {'virginica' } {'virginica' } 123 {'virginica' } {'virginica' } 124 {'virginica' } {'virginica' } 125 {'virginica' } {'virginica' } 126 {'virginica' } {'virginica' } 127 {'virginica' } {'virginica' } 128 {'virginica' } {'virginica' } 129 {'virginica' } {'virginica' } 130 {'virginica' } {'virginica' } 131 {'virginica' } {'virginica' } 132 {'virginica' } {'virginica' } 133 {'virginica' } {'virginica' } 134 {'virginica' } {'virginica' } 135 {'virginica' } {'virginica' } 136 {'virginica' } {'virginica' } 137 {'virginica' } {'virginica' } 138 {'virginica' } {'virginica' } 139 {'virginica' } {'virginica' } 140 {'virginica' } {'virginica' } 141 {'virginica' } {'virginica' } 142 {'virginica' } {'virginica' } 143 {'virginica' } {'virginica' } 144 {'virginica' } {'virginica' } 145 {'virginica' } {'virginica' } 146 {'virginica' } {'virginica' } 147 {'virginica' } {'virginica' } 148 {'virginica' } {'virginica' } 149 {'virginica' } {'virginica' } 150 {'virginica' } {'virginica' }
  1 Kommentar
Yumi Iwakami
Yumi Iwakami am 22 Sep. 2022
コード付きの詳しい説明,ありがとうございます.
MATLABによる機械学習についてもうすこし勉強してみたいと思います.

Melden Sie sich an, um zu kommentieren.

Weitere Antworten (0)

Kategorien

Mehr zu Statistics and Machine Learning Toolbox 入門 finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!