Fastest way to compute a multiplication of matrices times a sequence of kronecker products
6 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Patrick Mboma
am 8 Aug. 2022
Kommentiert: Patrick Mboma
am 8 Aug. 2022
I would like to compute the following operation
o=f*(kron(a0,a1,a1,a1,a1)+kron(a1,a0,a1,a1,a1)+kron(a1,a1,a0,a1,a1)+kron(a1,a1,a1,a0,a1)+kron(a1,a1,a1,a1,a0))*B
All matrices involved in the operation are very sparse. In particular,
a0 is of size 38 x 6 with 141 nonzero elements
a1 of size 38 x 6 with 32 nonzero elements
f is of size 25 x 79,235,168 with 4698 nonzero elements
B is of size 7776 x 7776 with 18 nonzero elements
In the notation above kron(a0,a1,a1,a1,a1) is a shorthand for kron(kron(kron(kron(a0,a1),a1),a1),a1)
How fast can this problem be solved and what is the fastest way to solve it?
2 Kommentare
Matt J
am 8 Aug. 2022
You are missing a closing ')' somewhere in your equation. I assume it is supposed to be this?
o=f*( kron(__)+kron(___)+kron(___)+kron(___) )*B
Akzeptierte Antwort
Matt J
am 8 Aug. 2022
Bearbeitet: Matt J
am 8 Aug. 2022
With this FEX package
it takes about 5 sec. on my machine: (EDIT: now it's much faster if we aggregate some of the operands into explicit Kronecker products, about 0.02 sec.)
a0=sprand(38,6,141/38/6);
a1=sprand(38,6,38/38/6);
ft=sprand(79235168,25,4698/25/79235168); %f tranposed - less memory
B=sprand(7776,7776,18/7776^2);
tic
K{1}=KronProd({kron(a0,kron(a1,a1)),kron(a1,a1)}).';
K{2}=KronProd({kron(a1,kron(a0,a1)),kron(a1,a1)}).';
K{3}=KronProd({kron(a1,kron(a1,a0)),kron(a1,a1)}).';
K{4}=KronProd({kron(a1,kron(a1,a1)),kron(a0,a1)}).';
K{5}=KronProd({kron(a1,kron(a1,a1)),kron(a1,a0)}).';
toc%Elapsed time is 0.007476 seconds.
tic;
o=0;
for i=1:5
o=o+K{i}*ft;
end
o=o.'*B;
toc%Elapsed time is 0.015946 seconds.
My code works with the transpose of f, since this consumes a lot less memory. Compare:
f=ft.';
whos f ft
17 Kommentare
Matt J
am 8 Aug. 2022
Bearbeitet: Matt J
am 8 Aug. 2022
I did the comparison below. The computation time differs substantially (as expected), but I do not see a significant numerical difference in the result:
a0=sprand(38,6,141/38/6);
a1=sprand(38,6,38/38/6);
ft=sprand(79235168,25,4698/25/79235168);
B=sprand(7776,7776,18/7776^2);
tic
K{1}=KronProd({kron(a0,kron(a1,a1)),kron(a1,a1)}).';
K{2}=KronProd({kron(a1,kron(a0,a1)),kron(a1,a1)}).';
K{3}=KronProd({kron(a1,kron(a1,a0)),kron(a1,a1)}).';
K{4}=KronProd({kron(a1,kron(a1,a1)),kron(a0,a1)}).';
K{5}=KronProd({kron(a1,kron(a1,a1)),kron(a1,a0)}).';
toc
o=0;
for i=1:5
o=o+K{i}*ft;
end
o=o.'*B;
o1=o;
K{1}=KronProd({a0,a1},[1,2,2,2,2]).';
K{2}=KronProd({a0,a1},[2,1,2,2,2]).';
K{3}=KronProd({a0,a1},[2,2,1,2,2]).';
K{4}=KronProd({a0,a1},[2,2,2,1,2]).';
K{5}=KronProd({a0,a1},[2,2,2,2,1]).';
o=0;
for i=1:5
o=o+K{i}*ft;
end
o=o.'*B;
o2=o;
PercentDiscrepancy = max(abs(o2(:)-o1(:)))/max(abs(o2(:)))*100 %2.2200e-14
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Creating and Concatenating Matrices finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!