System of mixed PDE with 2 variables using FDM and RK4
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
I want solve the attached mixed pdes in 2 variables with FDM and R4K. See my trial below: I received and error that 'N' is uncrecognised.

% parameters.
k1 = 6*10^(-12);
eta1 = 0.0240;
apha3 = -0.001104;
gama1 = 0.1093;
d = 0.0002;
%thetab = 0.0001;
% activity parameter
xi = 0.1;
%%%% Simplify parameters
A = (apha3*k1)/gama1;
B = A/k1;
%%%% Discretize xspace
z_vec = linspace(0, d, N);
dz = z_vec(2) - z_vec(1);
%%%% Discretize t
dt = (dz^2)/(2);
%%%% Discretize t
dtrk4 = (dz^2)/(2);
trk4_vec = 0: dtrk4:10;
% Allocate memory for u
thetark4_mat = zeros(length(z_vec), length(trk4_vec));
vrk4_mat = zeros(length(z_vec), length(trk4_vec));
%%%% IC
thetark4_mat(1,:) = 0; % Left end of pipe
thetark4_mat(end,:) = d; % right end of the pipe
vrk4_mat(1,:) = 0; % Left end of pipe
vrk4_mat(end,:) = d; % right end of the pipe
for tdz = 1:length(trk4_vec)-1
k11 = Derivative(thetark4_mat(:, tdz));
k12 = Derivative(vrk4_mat(:, tdz));
k21 = Derivative(thetark4_mat(:, tdz) + k11*dtrk4/2);
k22 = Derivative(vrk4_mat(:, tdz) + k12*dtrk4/2);
k31 = Derivative(thetark4_mat(:, tdz) + k21*dtrk4/2);
k32 = Derivative(vrk4_mat(:, tdz) + k22*dtrk4/2);
k41 = Derivative(thetark4_mat(:, tdz) + k31*dtrk4);
k42 = Derivative(vrk4_mat(:, tdz) + k32*dtrk4);
phi = (1/6)*(k11+ 2*k21 + 2*k31 +k41);
phi1 = (1/6)*(k12+ 2*k22 + 2*k32 +k42);
thetark4_mat(:, tdz+1) = thetark4_mat(:, tdz) + phi*dtrk4;
vrk4_mat(:, tdz+1) = vrk4_mat(:, tdz) + phi*dtrk4;
end
%%%% Plot this
[tt, zz] = meshgrid(trk4_vec, z_vec);
mesh(zz, tt, thetark4_mat)
xlabel('z')
ylabel('time')
zlabel('theta')
figure()
mesh(zz, tt, vrk4_mat)
xlabel('z')
ylabel('time')
zlabel('v')
function dthetadt = Derivative(theta, v)
%global x_vec dx k
dthetadt = 0*theta;
dvdt = 0*theta;
z_vec = linspace(0,10,10);
% parameters.
k1 = 6*10^(-12);
eta1 = 0.0240;
apha3 = -0.001104;
gama1 = 0.1093;
d = 0.0002;
%thetab = 0.0001;
% activity parameter
xi = 0.1;
%%%% Simplify parameters
A = (apha3*k1)/gama1;
B = A/k1;
dz = z_vec(2) - z_vec(1);
for j = 2:length(z_vec)-1
dvdt(j) = 0;
dthetadt(j) = A/(apha3*dz^2)*(theta(j+1) -2*theta(j) + theta(j-1)) + ...
B/(2*dz)*(v(j+1) - v(j-1));
dvdt(j) = A/(2*dz^3)*(theta(j+2) +2*theta(j+1) -2*theta(j-1)- theta(j-2))+ ...
(eta1 - B)/(dz^2)*(v(j+1) -2*v(j) + v(j-1)) - z/(2*dz)*(theta(j+1) - theta(j-1));
end
end
20 Kommentare
Torsten
am 6 Aug. 2022
theta and v both have only 5 elements.
But in these loops
for i=(N+4):(2*N)
rhsode(i,1)= C/(2*h^3)*(v(i+1) + 2*v(i) - 2*v(i-1))+ ...
+ G/(h^3)*(theta(i+2) -2*theta(i+1) + 2*theta(i-1) - theta(i-2))...
+xi/(2*h)*(theta(i+1) - theta(i-1)); %uses central difference for third derivative for theta
end
rhsode(2*N+1,1)=0;
for i = (5+N):(2*N + 1)
rhsode(i,1)= C/(2*h^3)*(v(i+1) + 2*v(i) - 2*v(i-1))+ ...
+ G/(h^3)*(-theta(i-2) +3*theta(i-1) -3*theta(i) + theta(i+1))...
+xi/(2*h)*(theta(i+1) - theta(i-1)); %involves special third derivative
end
almost every index of theta and v exceeds 5.
Use two arrays rhsode_theta and rhsode_v both arrays having 5 elements. Then indexing should be simple.
At the end, return
rhsode = [rhsode_theta;rhsode_v]
Antworten (2)
University Glasgow
am 8 Aug. 2022
1 Kommentar
Torsten
am 8 Aug. 2022
I don't understand why you deleted the call to "fsolve" in an earlier code.
Here is the error again I already commented on.
% parameters.
k1 = 6*10^(-12);
eta1 = 0.0240;
apha3 = -0.001104;
gama1 = 0.1093;
d = 0.0002;
N = 4;
% Boundary Conditions
Phi = 0;
% activity parameter
xi = 0.1;
h = d/N; %% step size
%%%% Simplify parameters
A = k1/gama1;
B = apha3/k1;
C = eta1 - B;
G = apha3*A;
Theta = 0.0001;
z=linspace(0,d,N+1);
theta0 = Theta*sin(pi*z/d)
v0 = zeros(1,N+1)
M1=eye(N+1,N+1);
M1(1,1)=0;
M1(N+1,N+1)=0;
M2=zeros(N+1,N+1);
M=[M1 M2;M2 M2];
u0 = [theta0'; v0'];
tspan = [0 10];
options = odeset('Mass',M,'RelTol',1e-4,'AbsTol',1e-6);
%[t,y] = ode15s(@lcode1,tspan,[u0;v0], options);
[t,y] = ode15s(@(t,y)lcode1(t,y,k1, eta1, apha3, d, Phi, h, xi, A, B, C, G),tspan,u0, options);
%theta = y(:,1:5);
%v = y(:,1:5);
% Plot the solution.
function rhsode = lcode1(~,y, k1, eta1, apha3, d, Phi, h, xi, A, B, C, G)
theta = y(1:5);
v = y(6:10);
rhsode = [theta(1)-Phi
(A/(h^2))*(theta(3)+2*theta(2)-theta(1))+(B/(2*h))*(v(3)-v(1))
(A/(h^2))*(theta(4)+2*theta(3)-theta(2))+(B/(2*h))*(v(4)-v(2))
(A/(h^2))*(theta(5)+2*theta(4)-theta(3))+(B/(2*h))*(v(5)-v(3))
theta(5)-Phi
v(1)
(G/(h^3))*(-theta(5) + 3*theta(2)-3*theta(3)+theta(4))+(C/(2*h^2))*(v(3) +2*v(2) - v(1)) + (xi/(2*h))*(theta(3)-theta(1))
(G/(h^3))*(-theta(2) + 3*theta(3)-3*theta(4)+theta(5))+(C/(2*h^2))*(v(4) -2*v(3) - v(2)) + (xi/(2*h))*(theta(4)-theta(2))
(G/(h^3))*(-theta(3) + 3*theta(4)-3*theta(5)+theta(2))+(C/(2*h^2))*(v(5) -2*v(4) - v(3)) + (xi/(2*h))*(theta(5)-theta(3))
v(5)];
end
Siehe auch
Kategorien
Mehr zu Manage Products finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!