Can't prove the convolution theorem of Fourier theorem for two dimensional matrices.
4 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Palguna Gopireddy
am 27 Jul. 2022
Kommentiert: Palguna Gopireddy
am 1 Aug. 2022
I multiplied two 2D matrices.A, B
A=[1 2;1 1];
B=[1 2;2 1];
C=A.*B;
I convolved their respective DFTs of 512*512 samples each by using the code given in https://in.mathworks.com/matlabcentral/answers/1665734-how-to-perform-2-dimensional-circular-convolution?s_tid=srchtitle
A_fft2=fft2(A,512,512);
B_fft2=fft2(B,512,512);
C_fft2_cconv2=circular_conv(A_fft2, B_fft2);
I found the IDFT of C_fft2; and applied DFT on C
C_ifft2=ifft2(C_fft2);
C_fft2=fft2(C,512,512);
Acoording to fourier theorem
C_ifft2(1:2,1:2) should be equal to C;
C_fft2 should be equal to C_fft2_cconv2.
But neither are them are same in the results.
Could someone tell how to get it.
0 Kommentare
Akzeptierte Antwort
Abderrahim. B
am 27 Jul. 2022
Hi!
Please read about discrete convolution ....
Perhaps this:
Conv, fft and ifft
x = randi(10, 20, 1);
y = randi(20,20,1);
n = length(x)+length(y)-1;
xConvFFt = ifft(fft(x,n).*fft(y,n)) ;
xConv = conv(x,y) ;
% compare
isequal(round(conv(x,y), 4), round(xConv, 4))
Conv2, fft2 and ifft2
x = randi(10, 20, 10);
y = randi(20,20,10);
m = length(x)+length(y)-1;
n = length(x) - 1;
xConvFFt2 = ifft2(fft2(x,m, n).*fft2(y,m, n)) ;
xConv2 = conv2(x,y) ;
% compare
isequal(round(xConvFFt2), round(xConv2))
HTH
5 Kommentare
Paul
am 30 Jul. 2022
Bearbeitet: Paul
am 31 Jul. 2022
When approximating an integral with a sum, the sum needs to be scaled by dtheta.
format short e
a2=[1 2 1 3];
b2=[2 3 2 1];
c2=a2.*b2
For N = 512
N = 512;
dtheta = 2*pi/N;
c2f_cconv_dft=(1/(2*pi))*cconv(fft(a2,N),fft(b2,N),N)*dtheta;
Note that 2*pi cancels, so better to just do
c2f_cconv_dft=cconv(fft(a2,N),fft(b2,N),N)/N;
c2f_cconv_idft=ifft(c2f_cconv_dft,512);
The first four points "match"
c2f_cconv_idft(1:4)
The rest of the points are "zero"
max(abs(c2f_cconv_idft(5:end)))
I think this example is actually demonstrating circular convolution theorem of the DFT or its dual, which should be closely related to the convolution property of the DTFT.
Weitere Antworten (0)
Siehe auch
Kategorien
Mehr zu Discrete Fourier and Cosine Transforms finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!