Newton's method problem

10 Ansichten (letzte 30 Tage)
Prozka
Prozka am 7 Okt. 2011
clear all; close all;
a=4;
b=3;
x=zeros();
x(1)=1;
for i=1:1000;
f(x(i))=(x(i)-a)^2+b;
x(i+1) =x(i)-(f(x(i))/diff(f(x(i))));
end
  4 Kommentare
Prozka
Prozka am 7 Okt. 2011
Yeah
Actually I need to write code for solve optimization problem
using Newtons Method
the problem is
Minimizing the f(x)=(x-4)^2+9
Walter Roberson
Walter Roberson am 7 Okt. 2011
Code that has a "clear all" statement is broken 99 times out of 100.

Melden Sie sich an, um zu kommentieren.

Antworten (3)

Andrei Bobrov
Andrei Bobrov am 7 Okt. 2011
for your case EDITED
f = @(x)(x - 4)^2 + 9;
syms x
ex = (x - 4)^2 + 9;
cf = double(coeffs(ex));
distxp = (4*prod(cf([1 end]))-cf(2)^2)/4/cf(3);
fun = matlabFunction(ex - distxp);
df = matlabFunction(diff(ex));
x = 10;
xout = x;
while abs(fun(x)) > 1e-6
x1 = x - fun(x)/df(x);
x = x1;
xout = [xout;x];
end
ADD corrected
f = @(x)(x - 4)^2 + 9;
syms x
ex = (x - 4)^2 + 9;
cf = fliplr(double(coeffs(expand(ex))));
distxp = (4*prod(cf([1 end]))-cf(2)^2)/4/cf(1);
fun = @(x)f(x)-distxp;
dcf = polyder(cf);
df = @(x)polyval(dcf,x);
x = 10;
xout = x;
while abs(fun(x)) > 1e-6
x1 = x - fun(x)/df(x);
x = x1;
xout = [xout;x];
end
output for the first 10 iterations and optimal x
if numel(xout)<=10
out = xout;
else
out = [xout(1:10);xout(end)];
end
  7 Kommentare
Andrei Bobrov
Andrei Bobrov am 9 Okt. 2011
Proshka, include your head (brain) 10000 iterations is very many
Prozka
Prozka am 9 Okt. 2011
above case I agree with you we need 10 iterations
but I need to use this code for complex functions
like f(x)=cosx+sin2x+e-x
thanks

Melden Sie sich an, um zu kommentieren.


Andreas Goser
Andreas Goser am 7 Okt. 2011
This code isn't working because diff(f(x(i))) returns [] and thus a scalar can't be divide by [].
  1 Kommentar
Prozka
Prozka am 7 Okt. 2011
Actually I need to write code for solve optimization problem
using Newtons Method
the problem is
Minimizing the f(x)=(x-4)^2+9

Melden Sie sich an, um zu kommentieren.


Steve
Steve am 9 Okt. 2011
You can use this Newton function implementation in general.
function n = newton(f,fp,x0,tol,Nmax)
n=0;
test_val = abs(poly_val(f,x0));
num1 = 1;
while (test_val > tol && num1<Nmax)
n = x0 - poly_val(f,x0)/poly_val(fp,x0);
test_val = abs(poly_val(f,n));
x0=n;
num1=num1+1;
end
end
  1 Kommentar
Prozka
Prozka am 9 Okt. 2011
how abt poly_val???

Melden Sie sich an, um zu kommentieren.

Kategorien

Mehr zu Nonlinear Optimization finden Sie in Help Center und File Exchange

Community Treasure Hunt

Find the treasures in MATLAB Central and discover how the community can help you!

Start Hunting!

Translated by