Newton's method problem
10 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
clear all; close all;
a=4;
b=3;
x=zeros();
x(1)=1;
for i=1:1000;
f(x(i))=(x(i)-a)^2+b;
x(i+1) =x(i)-(f(x(i))/diff(f(x(i))));
end
4 Kommentare
Antworten (3)
Andrei Bobrov
am 7 Okt. 2011
for your case EDITED
f = @(x)(x - 4)^2 + 9;
syms x
ex = (x - 4)^2 + 9;
cf = double(coeffs(ex));
distxp = (4*prod(cf([1 end]))-cf(2)^2)/4/cf(3);
fun = matlabFunction(ex - distxp);
df = matlabFunction(diff(ex));
x = 10;
xout = x;
while abs(fun(x)) > 1e-6
x1 = x - fun(x)/df(x);
x = x1;
xout = [xout;x];
end
ADD corrected
f = @(x)(x - 4)^2 + 9;
syms x
ex = (x - 4)^2 + 9;
cf = fliplr(double(coeffs(expand(ex))));
distxp = (4*prod(cf([1 end]))-cf(2)^2)/4/cf(1);
fun = @(x)f(x)-distxp;
dcf = polyder(cf);
df = @(x)polyval(dcf,x);
x = 10;
xout = x;
while abs(fun(x)) > 1e-6
x1 = x - fun(x)/df(x);
x = x1;
xout = [xout;x];
end
output for the first 10 iterations and optimal x
if numel(xout)<=10
out = xout;
else
out = [xout(1:10);xout(end)];
end
7 Kommentare
Andreas Goser
am 7 Okt. 2011
This code isn't working because diff(f(x(i))) returns [] and thus a scalar can't be divide by [].
Steve
am 9 Okt. 2011
You can use this Newton function implementation in general.
function n = newton(f,fp,x0,tol,Nmax)
n=0;
test_val = abs(poly_val(f,x0));
num1 = 1;
while (test_val > tol && num1<Nmax)
n = x0 - poly_val(f,x0)/poly_val(fp,x0);
test_val = abs(poly_val(f,n));
x0=n;
num1=num1+1;
end
end
Siehe auch
Kategorien
Mehr zu Nonlinear Optimization finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!