Solve a system of 4 non linear equations with symbolic expressions
3 Ansichten (letzte 30 Tage)
Ältere Kommentare anzeigen
Hello,
Could you tell me please the way to solve this system of equations using Matlab ?
Thanks for your help,
h = ((zeta*(1-u))/(gamma*(1+eta-n*eta)-1))^(1/(alpha*theta))*((theta*(1-alpha)*(1-tau_l)*A)/(1-theta))^(1/alpha)*u^(-1);
c = (((1-beta)*n*eta*gamma)*(b+1-delta+alpha*A*(h*u)^(1-alpha)*(1-tau_k)))/(beta*(1-delta+alpha*A*(h*u)^(1-alpha)*(1-tau_k))-1+n+n*eta);
b = (A*(h*u)^(1-alpha)*(d-tau_l*(1-alpha)-alpha*tau_k)*(1-delta+alpha*A*(h*u)^(1-alpha)*(1-tau_k)))/((1+n)*gamma-1+delta-alpha*A*(h*u)^(1-alpha)*(1-tau_k));
gamma = (A*(h*u)^(1-alpha)*(1-d-((theta*(1-alpha)*(1-u)*(1-tau_l))/((1-theta)*u)))-c+1-delta)/(1+n);
9 Kommentare
Walter Roberson
am 27 Mai 2022
At the moment I cannot think of any way that Simulink would be useful for this purpose.
I have no information about the quality of Octave implementation of relevant routines.
Antworten (1)
Sam Chak
am 27 Mai 2022
Bearbeitet: Sam Chak
am 27 Mai 2022
You can follow the examples in
to create a function m-file and write the equations in the form
.
![](https://www.mathworks.com/matlabcentral/answers/uploaded_files/1012750/image.png)
function F = root2d(x)
F(1) = exp(-exp(-(x(1) + x(2)))) - x(2)*(1 + x(1)^2);
F(2) = x(1)*cos(x(2)) + x(2)*sin(x(1)) - 0.5;
end
Then, in the command window, type:
fun = @root2d;
x0 = [0, 0]; % guess initial point of the solution [0, 0].
x = fsolve(fun, x0)
x =
0.3532 0.6061
If you prefer solving the problem symbolically, you can use the solve function and refer to this link:
0 Kommentare
Siehe auch
Kategorien
Mehr zu Calculus finden Sie in Help Center und File Exchange
Community Treasure Hunt
Find the treasures in MATLAB Central and discover how the community can help you!
Start Hunting!